Whakaoti mō x, y
x=45
y=30
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+3y=180,x+2y=105
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y=180
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-3y+180
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y+180\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y+90
Whakareatia \frac{1}{2} ki te -3y+180.
-\frac{3}{2}y+90+2y=105
Whakakapia te -\frac{3y}{2}+90 mō te x ki tērā atu whārite, x+2y=105.
\frac{1}{2}y+90=105
Tāpiri -\frac{3y}{2} ki te 2y.
\frac{1}{2}y=15
Me tango 90 mai i ngā taha e rua o te whārite.
y=30
Me whakarea ngā taha e rua ki te 2.
x=-\frac{3}{2}\times 30+90
Whakaurua te 30 mō y ki x=-\frac{3}{2}y+90. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-45+90
Whakareatia -\frac{3}{2} ki te 30.
x=45
Tāpiri 90 ki te -45.
x=45,y=30
Kua oti te pūnaha te whakatau.
2x+3y=180,x+2y=105
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}180\\105\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}180\\105\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}180\\105\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}180\\105\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{3}{2\times 2-3}\\-\frac{1}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}180\\105\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-3\\-1&2\end{matrix}\right)\left(\begin{matrix}180\\105\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 180-3\times 105\\-180+2\times 105\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\30\end{matrix}\right)
Mahia ngā tātaitanga.
x=45,y=30
Tangohia ngā huānga poukapa x me y.
2x+3y=180,x+2y=105
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+3y=180,2x+2\times 2y=2\times 105
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+3y=180,2x+4y=210
Whakarūnātia.
2x-2x+3y-4y=180-210
Me tango 2x+4y=210 mai i 2x+3y=180 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-4y=180-210
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=180-210
Tāpiri 3y ki te -4y.
-y=-30
Tāpiri 180 ki te -210.
y=30
Whakawehea ngā taha e rua ki te -1.
x+2\times 30=105
Whakaurua te 30 mō y ki x+2y=105. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+60=105
Whakareatia 2 ki te 30.
x=45
Me tango 60 mai i ngā taha e rua o te whārite.
x=45,y=30
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}