Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+3y+5=0,3x-2y-12=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+3y+5=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x+3y=-5
Me tango 5 mai i ngā taha e rua o te whārite.
2x=-3y-5
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-3y-5\right)
Whakawehea ngā taha e rua ki te 2.
x=-\frac{3}{2}y-\frac{5}{2}
Whakareatia \frac{1}{2} ki te -3y-5.
3\left(-\frac{3}{2}y-\frac{5}{2}\right)-2y-12=0
Whakakapia te \frac{-3y-5}{2} mō te x ki tērā atu whārite, 3x-2y-12=0.
-\frac{9}{2}y-\frac{15}{2}-2y-12=0
Whakareatia 3 ki te \frac{-3y-5}{2}.
-\frac{13}{2}y-\frac{15}{2}-12=0
Tāpiri -\frac{9y}{2} ki te -2y.
-\frac{13}{2}y-\frac{39}{2}=0
Tāpiri -\frac{15}{2} ki te -12.
-\frac{13}{2}y=\frac{39}{2}
Me tāpiri \frac{39}{2} ki ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\left(-3\right)-\frac{5}{2}
Whakaurua te -3 mō y ki x=-\frac{3}{2}y-\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9-5}{2}
Whakareatia -\frac{3}{2} ki te -3.
x=2
Tāpiri -\frac{5}{2} ki te \frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-3
Kua oti te pūnaha te whakatau.
2x+3y+5=0,3x-2y-12=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}-5\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}-5\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-2\end{matrix}\right))\left(\begin{matrix}-5\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-3\times 3}&-\frac{3}{2\left(-2\right)-3\times 3}\\-\frac{3}{2\left(-2\right)-3\times 3}&\frac{2}{2\left(-2\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}-5\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\\frac{3}{13}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}-5\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\left(-5\right)+\frac{3}{13}\times 12\\\frac{3}{13}\left(-5\right)-\frac{2}{13}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-3
Tangohia ngā huānga poukapa x me y.
2x+3y+5=0,3x-2y-12=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 3y+3\times 5=0,2\times 3x+2\left(-2\right)y+2\left(-12\right)=0
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+9y+15=0,6x-4y-24=0
Whakarūnātia.
6x-6x+9y+4y+15+24=0
Me tango 6x-4y-24=0 mai i 6x+9y+15=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+4y+15+24=0
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
13y+15+24=0
Tāpiri 9y ki te 4y.
13y+39=0
Tāpiri 15 ki te 24.
13y=-39
Me tango 39 mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te 13.
3x-2\left(-3\right)-12=0
Whakaurua te -3 mō y ki 3x-2y-12=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+6-12=0
Whakareatia -2 ki te -3.
3x-6=0
Tāpiri 6 ki te -12.
3x=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=-3
Kua oti te pūnaha te whakatau.