Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+2y=6,-5x+7y=11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-2y+6
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-2y+6\right)
Whakawehea ngā taha e rua ki te 2.
x=-y+3
Whakareatia \frac{1}{2} ki te -2y+6.
-5\left(-y+3\right)+7y=11
Whakakapia te -y+3 mō te x ki tērā atu whārite, -5x+7y=11.
5y-15+7y=11
Whakareatia -5 ki te -y+3.
12y-15=11
Tāpiri 5y ki te 7y.
12y=26
Me tāpiri 15 ki ngā taha e rua o te whārite.
y=\frac{13}{6}
Whakawehea ngā taha e rua ki te 12.
x=-\frac{13}{6}+3
Whakaurua te \frac{13}{6} mō y ki x=-y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{5}{6}
Tāpiri 3 ki te -\frac{13}{6}.
x=\frac{5}{6},y=\frac{13}{6}
Kua oti te pūnaha te whakatau.
2x+2y=6,-5x+7y=11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&2\\-5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}2&2\\-5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&2\\-5&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\-5&7\end{matrix}\right))\left(\begin{matrix}6\\11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2\times 7-2\left(-5\right)}&-\frac{2}{2\times 7-2\left(-5\right)}\\-\frac{-5}{2\times 7-2\left(-5\right)}&\frac{2}{2\times 7-2\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{24}&-\frac{1}{12}\\\frac{5}{24}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}6\\11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{24}\times 6-\frac{1}{12}\times 11\\\frac{5}{24}\times 6+\frac{1}{12}\times 11\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\\\frac{13}{6}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{5}{6},y=\frac{13}{6}
Tangohia ngā huānga poukapa x me y.
2x+2y=6,-5x+7y=11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-5\times 2x-5\times 2y=-5\times 6,2\left(-5\right)x+2\times 7y=2\times 11
Kia ōrite ai a 2x me -5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
-10x-10y=-30,-10x+14y=22
Whakarūnātia.
-10x+10x-10y-14y=-30-22
Me tango -10x+14y=22 mai i -10x-10y=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-10y-14y=-30-22
Tāpiri -10x ki te 10x. Ka whakakore atu ngā kupu -10x me 10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-24y=-30-22
Tāpiri -10y ki te -14y.
-24y=-52
Tāpiri -30 ki te -22.
y=\frac{13}{6}
Whakawehea ngā taha e rua ki te -24.
-5x+7\times \frac{13}{6}=11
Whakaurua te \frac{13}{6} mō y ki -5x+7y=11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-5x+\frac{91}{6}=11
Whakareatia 7 ki te \frac{13}{6}.
-5x=-\frac{25}{6}
Me tango \frac{91}{6} mai i ngā taha e rua o te whārite.
x=\frac{5}{6}
Whakawehea ngā taha e rua ki te -5.
x=\frac{5}{6},y=\frac{13}{6}
Kua oti te pūnaha te whakatau.