Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+2y=28,x+3y=24
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+2y=28
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-2y+28
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-2y+28\right)
Whakawehea ngā taha e rua ki te 2.
x=-y+14
Whakareatia \frac{1}{2} ki te -2y+28.
-y+14+3y=24
Whakakapia te -y+14 mō te x ki tērā atu whārite, x+3y=24.
2y+14=24
Tāpiri -y ki te 3y.
2y=10
Me tango 14 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te 2.
x=-5+14
Whakaurua te 5 mō y ki x=-y+14. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=9
Tāpiri 14 ki te -5.
x=9,y=5
Kua oti te pūnaha te whakatau.
2x+2y=28,x+3y=24
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}2&2\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&2\\1&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\1&3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-2}&-\frac{2}{2\times 3-2}\\-\frac{1}{2\times 3-2}&\frac{2}{2\times 3-2}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&-\frac{1}{2}\\-\frac{1}{4}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 28-\frac{1}{2}\times 24\\-\frac{1}{4}\times 28+\frac{1}{2}\times 24\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=5
Tangohia ngā huānga poukapa x me y.
2x+2y=28,x+3y=24
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+2y=28,2x+2\times 3y=2\times 24
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+2y=28,2x+6y=48
Whakarūnātia.
2x-2x+2y-6y=28-48
Me tango 2x+6y=48 mai i 2x+2y=28 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-6y=28-48
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4y=28-48
Tāpiri 2y ki te -6y.
-4y=-20
Tāpiri 28 ki te -48.
y=5
Whakawehea ngā taha e rua ki te -4.
x+3\times 5=24
Whakaurua te 5 mō y ki x+3y=24. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+15=24
Whakareatia 3 ki te 5.
x=9
Me tango 15 mai i ngā taha e rua o te whārite.
x=9,y=5
Kua oti te pūnaha te whakatau.