Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+2y=0,3x-y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+2y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-2y
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-2\right)y
Whakawehea ngā taha e rua ki te 2.
x=-y
Whakareatia \frac{1}{2} ki te -2y.
3\left(-1\right)y-y=2
Whakakapia te -y mō te x ki tērā atu whārite, 3x-y=2.
-3y-y=2
Whakareatia 3 ki te -y.
-4y=2
Tāpiri -3y ki te -y.
y=-\frac{1}{2}
Whakawehea ngā taha e rua ki te -4.
x=-\left(-\frac{1}{2}\right)
Whakaurua te -\frac{1}{2} mō y ki x=-y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{2}
Whakareatia -1 ki te -\frac{1}{2}.
x=\frac{1}{2},y=-\frac{1}{2}
Kua oti te pūnaha te whakatau.
2x+2y=0,3x-y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}2&2\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&2\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-2\times 3}&-\frac{2}{2\left(-1\right)-2\times 3}\\-\frac{3}{2\left(-1\right)-2\times 3}&\frac{2}{2\left(-1\right)-2\times 3}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{8}&\frac{1}{4}\\\frac{3}{8}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 2\\-\frac{1}{4}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{2},y=-\frac{1}{2}
Tangohia ngā huānga poukapa x me y.
2x+2y=0,3x-y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2x+3\times 2y=0,2\times 3x+2\left(-1\right)y=2\times 2
Kia ōrite ai a 2x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6x+6y=0,6x-2y=4
Whakarūnātia.
6x-6x+6y+2y=-4
Me tango 6x-2y=4 mai i 6x+6y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y+2y=-4
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
8y=-4
Tāpiri 6y ki te 2y.
y=-\frac{1}{2}
Whakawehea ngā taha e rua ki te 8.
3x-\left(-\frac{1}{2}\right)=2
Whakaurua te -\frac{1}{2} mō y ki 3x-y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x=\frac{3}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
x=\frac{1}{2}
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{2},y=-\frac{1}{2}
Kua oti te pūnaha te whakatau.