Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+16y=22,4x+8y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+16y=22
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=-16y+22
Me tango 16y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(-16y+22\right)
Whakawehea ngā taha e rua ki te 2.
x=-8y+11
Whakareatia \frac{1}{2} ki te -16y+22.
4\left(-8y+11\right)+8y=20
Whakakapia te -8y+11 mō te x ki tērā atu whārite, 4x+8y=20.
-32y+44+8y=20
Whakareatia 4 ki te -8y+11.
-24y+44=20
Tāpiri -32y ki te 8y.
-24y=-24
Me tango 44 mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua ki te -24.
x=-8+11
Whakaurua te 1 mō y ki x=-8y+11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=3
Tāpiri 11 ki te -8.
x=3,y=1
Kua oti te pūnaha te whakatau.
2x+16y=22,4x+8y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&16\\4&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&16\\4&8\end{matrix}\right))\left(\begin{matrix}2&16\\4&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&16\\4&8\end{matrix}\right))\left(\begin{matrix}22\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&16\\4&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&16\\4&8\end{matrix}\right))\left(\begin{matrix}22\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&16\\4&8\end{matrix}\right))\left(\begin{matrix}22\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{2\times 8-16\times 4}&-\frac{16}{2\times 8-16\times 4}\\-\frac{4}{2\times 8-16\times 4}&\frac{2}{2\times 8-16\times 4}\end{matrix}\right)\left(\begin{matrix}22\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{3}\\\frac{1}{12}&-\frac{1}{24}\end{matrix}\right)\left(\begin{matrix}22\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 22+\frac{1}{3}\times 20\\\frac{1}{12}\times 22-\frac{1}{24}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=1
Tangohia ngā huānga poukapa x me y.
2x+16y=22,4x+8y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 2x+4\times 16y=4\times 22,2\times 4x+2\times 8y=2\times 20
Kia ōrite ai a 2x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
8x+64y=88,8x+16y=40
Whakarūnātia.
8x-8x+64y-16y=88-40
Me tango 8x+16y=40 mai i 8x+64y=88 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
64y-16y=88-40
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
48y=88-40
Tāpiri 64y ki te -16y.
48y=48
Tāpiri 88 ki te -40.
y=1
Whakawehea ngā taha e rua ki te 48.
4x+8=20
Whakaurua te 1 mō y ki 4x+8y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=12
Me tango 8 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 4.
x=3,y=1
Kua oti te pūnaha te whakatau.