Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x+\sqrt{3}y=-2,x-y-1=\sqrt{3}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+\sqrt{3}y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=\left(-\sqrt{3}\right)y-2
Me tango \sqrt{3}y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(\left(-\sqrt{3}\right)y-2\right)
Whakawehea ngā taha e rua ki te 2.
x=\left(-\frac{\sqrt{3}}{2}\right)y-1
Whakareatia \frac{1}{2} ki te -\sqrt{3}y-2.
\left(-\frac{\sqrt{3}}{2}\right)y-1-y-1=\sqrt{3}
Whakakapia te -\frac{\sqrt{3}y}{2}-1 mō te x ki tērā atu whārite, x-y-1=\sqrt{3}.
\left(-\frac{\sqrt{3}}{2}-1\right)y-1-1=\sqrt{3}
Tāpiri -\frac{\sqrt{3}y}{2} ki te -y.
\left(-\frac{\sqrt{3}}{2}-1\right)y-2=\sqrt{3}
Tāpiri -1 ki te -1.
\left(-\frac{\sqrt{3}}{2}-1\right)y=\sqrt{3}+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -\frac{\sqrt{3}}{2}-1.
x=\left(-\frac{\sqrt{3}}{2}\right)\left(-2\right)-1
Whakaurua te -2 mō y ki x=\left(-\frac{\sqrt{3}}{2}\right)y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\sqrt{3}-1
Whakareatia -\frac{\sqrt{3}}{2} ki te -2.
x=\sqrt{3}-1,y=-2
Kua oti te pūnaha te whakatau.
2x+\sqrt{3}y=-2,x-y-1=\sqrt{3}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+\sqrt{3}y=-2,2x+2\left(-1\right)y+2\left(-1\right)=2\sqrt{3}
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+\sqrt{3}y=-2,2x-2y-2=2\sqrt{3}
Whakarūnātia.
2x-2x+\sqrt{3}y+2y+2=-2-2\sqrt{3}
Me tango 2x-2y-2=2\sqrt{3} mai i 2x+\sqrt{3}y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\sqrt{3}y+2y+2=-2-2\sqrt{3}
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(\sqrt{3}+2\right)y+2=-2-2\sqrt{3}
Tāpiri \sqrt{3}y ki te 2y.
\left(\sqrt{3}+2\right)y+2=-2\sqrt{3}-2
Tāpiri -2 ki te -2\sqrt{3}.
\left(\sqrt{3}+2\right)y=-2\sqrt{3}-4
Me tango 2 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te \sqrt{3}+2.
x-\left(-2\right)-1=\sqrt{3}
Whakaurua te -2 mō y ki x-y-1=\sqrt{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+1=\sqrt{3}
Tāpiri 2 ki te -1.
x=\sqrt{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=\sqrt{3}-1,y=-2
Kua oti te pūnaha te whakatau.