Whakaoti mō x, y
x=\sqrt{3}-1\approx 0.732050808
y=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x+\sqrt{3}y=-2,x-y-1=\sqrt{3}
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2x+\sqrt{3}y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2x=\left(-\sqrt{3}\right)y-2
Me tango \sqrt{3}y mai i ngā taha e rua o te whārite.
x=\frac{1}{2}\left(\left(-\sqrt{3}\right)y-2\right)
Whakawehea ngā taha e rua ki te 2.
x=\left(-\frac{\sqrt{3}}{2}\right)y-1
Whakareatia \frac{1}{2} ki te -\sqrt{3}y-2.
\left(-\frac{\sqrt{3}}{2}\right)y-1-y-1=\sqrt{3}
Whakakapia te -\frac{\sqrt{3}y}{2}-1 mō te x ki tērā atu whārite, x-y-1=\sqrt{3}.
\left(-\frac{\sqrt{3}}{2}-1\right)y-1-1=\sqrt{3}
Tāpiri -\frac{\sqrt{3}y}{2} ki te -y.
\left(-\frac{\sqrt{3}}{2}-1\right)y-2=\sqrt{3}
Tāpiri -1 ki te -1.
\left(-\frac{\sqrt{3}}{2}-1\right)y=\sqrt{3}+2
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te -\frac{\sqrt{3}}{2}-1.
x=\left(-\frac{\sqrt{3}}{2}\right)\left(-2\right)-1
Whakaurua te -2 mō y ki x=\left(-\frac{\sqrt{3}}{2}\right)y-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\sqrt{3}-1
Whakareatia -\frac{\sqrt{3}}{2} ki te -2.
x=\sqrt{3}-1,y=-2
Kua oti te pūnaha te whakatau.
2x+\sqrt{3}y=-2,x-y-1=\sqrt{3}
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2x+\sqrt{3}y=-2,2x+2\left(-1\right)y+2\left(-1\right)=2\sqrt{3}
Kia ōrite ai a 2x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2x+\sqrt{3}y=-2,2x-2y-2=2\sqrt{3}
Whakarūnātia.
2x-2x+\sqrt{3}y+2y+2=-2-2\sqrt{3}
Me tango 2x-2y-2=2\sqrt{3} mai i 2x+\sqrt{3}y=-2 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
\sqrt{3}y+2y+2=-2-2\sqrt{3}
Tāpiri 2x ki te -2x. Ka whakakore atu ngā kupu 2x me -2x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(\sqrt{3}+2\right)y+2=-2-2\sqrt{3}
Tāpiri \sqrt{3}y ki te 2y.
\left(\sqrt{3}+2\right)y+2=-2\sqrt{3}-2
Tāpiri -2 ki te -2\sqrt{3}.
\left(\sqrt{3}+2\right)y=-2\sqrt{3}-4
Me tango 2 mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua ki te \sqrt{3}+2.
x-\left(-2\right)-1=\sqrt{3}
Whakaurua te -2 mō y ki x-y-1=\sqrt{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+1=\sqrt{3}
Tāpiri 2 ki te -1.
x=\sqrt{3}-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=\sqrt{3}-1,y=-2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}