Whakaoti mō n, m
n=2
m=1
Tohaina
Kua tāruatia ki te papatopenga
2n-3m=1,n+m=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2n-3m=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te n mā te wehe i te n i te taha mauī o te tohu ōrite.
2n=3m+1
Me tāpiri 3m ki ngā taha e rua o te whārite.
n=\frac{1}{2}\left(3m+1\right)
Whakawehea ngā taha e rua ki te 2.
n=\frac{3}{2}m+\frac{1}{2}
Whakareatia \frac{1}{2} ki te 3m+1.
\frac{3}{2}m+\frac{1}{2}+m=3
Whakakapia te \frac{3m+1}{2} mō te n ki tērā atu whārite, n+m=3.
\frac{5}{2}m+\frac{1}{2}=3
Tāpiri \frac{3m}{2} ki te m.
\frac{5}{2}m=\frac{5}{2}
Me tango \frac{1}{2} mai i ngā taha e rua o te whārite.
m=1
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
n=\frac{3+1}{2}
Whakaurua te 1 mō m ki n=\frac{3}{2}m+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō n hāngai tonu.
n=2
Tāpiri \frac{1}{2} ki te \frac{3}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
n=2,m=1
Kua oti te pūnaha te whakatau.
2n-3m=1,n+m=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}n\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}n\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}n\\m\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}1\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{3}{5}\times 3\\-\frac{1}{5}+\frac{2}{5}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}n\\m\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
n=2,m=1
Tangohia ngā huānga poukapa n me m.
2n-3m=1,n+m=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2n-3m=1,2n+2m=2\times 3
Kia ōrite ai a 2n me n, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2n-3m=1,2n+2m=6
Whakarūnātia.
2n-2n-3m-2m=1-6
Me tango 2n+2m=6 mai i 2n-3m=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3m-2m=1-6
Tāpiri 2n ki te -2n. Ka whakakore atu ngā kupu 2n me -2n, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5m=1-6
Tāpiri -3m ki te -2m.
-5m=-5
Tāpiri 1 ki te -6.
m=1
Whakawehea ngā taha e rua ki te -5.
n+1=3
Whakaurua te 1 mō m ki n+m=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō n hāngai tonu.
n=2
Me tango 1 mai i ngā taha e rua o te whārite.
n=2,m=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}