Whakaoti mō n, m
n=0
m=1
Tohaina
Kua tāruatia ki te papatopenga
2n=1-1
Whakaarohia te whārite tuatahi. Tangohia te 1 mai i ngā taha e rua.
2n=0
Tangohia te 1 i te 1, ka 0.
n=0
Whakawehea ngā taha e rua ki te 2. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
3m=1+2
Whakaarohia te whārite tuarua. Me tāpiri te 2 ki ngā taha e rua.
3m=3
Tāpirihia te 1 ki te 2, ka 3.
m=\frac{3}{3}
Whakawehea ngā taha e rua ki te 3.
m=1
Whakawehea te 3 ki te 3, kia riro ko 1.
n=0 m=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}