Whakaoti mō m, n
m = \frac{8}{5} = 1\frac{3}{5} = 1.6
n = \frac{7}{5} = 1\frac{2}{5} = 1.4
Tohaina
Kua tāruatia ki te papatopenga
2m-3n=-1,m+n=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2m-3n=-1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te m mā te wehe i te m i te taha mauī o te tohu ōrite.
2m=3n-1
Me tāpiri 3n ki ngā taha e rua o te whārite.
m=\frac{1}{2}\left(3n-1\right)
Whakawehea ngā taha e rua ki te 2.
m=\frac{3}{2}n-\frac{1}{2}
Whakareatia \frac{1}{2} ki te 3n-1.
\frac{3}{2}n-\frac{1}{2}+n=3
Whakakapia te \frac{3n-1}{2} mō te m ki tērā atu whārite, m+n=3.
\frac{5}{2}n-\frac{1}{2}=3
Tāpiri \frac{3n}{2} ki te n.
\frac{5}{2}n=\frac{7}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
n=\frac{7}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
m=\frac{3}{2}\times \frac{7}{5}-\frac{1}{2}
Whakaurua te \frac{7}{5} mō n ki m=\frac{3}{2}n-\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=\frac{21}{10}-\frac{1}{2}
Whakareatia \frac{3}{2} ki te \frac{7}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{8}{5}
Tāpiri -\frac{1}{2} ki te \frac{21}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
m=\frac{8}{5},n=\frac{7}{5}
Kua oti te pūnaha te whakatau.
2m-3n=-1,m+n=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}2&-3\\1&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\1&1\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-3\right)}&-\frac{-3}{2-\left(-3\right)}\\-\frac{1}{2-\left(-3\right)}&\frac{2}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-1\right)+\frac{3}{5}\times 3\\-\frac{1}{5}\left(-1\right)+\frac{2}{5}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\\\frac{7}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
m=\frac{8}{5},n=\frac{7}{5}
Tangohia ngā huānga poukapa m me n.
2m-3n=-1,m+n=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2m-3n=-1,2m+2n=2\times 3
Kia ōrite ai a 2m me m, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
2m-3n=-1,2m+2n=6
Whakarūnātia.
2m-2m-3n-2n=-1-6
Me tango 2m+2n=6 mai i 2m-3n=-1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3n-2n=-1-6
Tāpiri 2m ki te -2m. Ka whakakore atu ngā kupu 2m me -2m, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5n=-1-6
Tāpiri -3n ki te -2n.
-5n=-7
Tāpiri -1 ki te -6.
n=\frac{7}{5}
Whakawehea ngā taha e rua ki te -5.
m+\frac{7}{5}=3
Whakaurua te \frac{7}{5} mō n ki m+n=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō m hāngai tonu.
m=\frac{8}{5}
Me tango \frac{7}{5} mai i ngā taha e rua o te whārite.
m=\frac{8}{5},n=\frac{7}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}