Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}\\x=2a\text{, }y=-2b\text{, }&\text{unconditionally}\\x=0\text{, }y\in \mathrm{C}\text{, }&a=0\\x\in \mathrm{C}\text{, }y=0\text{, }&b=0\\x\in \mathrm{C}\text{, }y\in \mathrm{C}\text{, }&b=0\text{ and }a=0\end{matrix}\right.
Whakaoti mō x, y
\left\{\begin{matrix}\\x=2a\text{, }y=-2b\text{, }&\text{unconditionally}\\x=0\text{, }y\in \mathrm{R}\text{, }&a=0\\x\in \mathrm{R}\text{, }y=0\text{, }&b=0\\x\in \mathrm{R}\text{, }y\in \mathrm{R}\text{, }&b=0\text{ and }a=0\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
2bx+ay=2ab,bx+\left(-a\right)y=4ab
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2bx+ay=2ab
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2bx=\left(-a\right)y+2ab
Me tango ay mai i ngā taha e rua o te whārite.
x=\frac{1}{2b}\left(\left(-a\right)y+2ab\right)
Whakawehea ngā taha e rua ki te 2b.
x=\left(-\frac{a}{2b}\right)y+a
Whakareatia \frac{1}{2b} ki te a\left(-y+2b\right).
b\left(\left(-\frac{a}{2b}\right)y+a\right)+\left(-a\right)y=4ab
Whakakapia te a-\frac{ay}{2b} mō te x ki tērā atu whārite, bx+\left(-a\right)y=4ab.
\left(-\frac{a}{2}\right)y+ab+\left(-a\right)y=4ab
Whakareatia b ki te a-\frac{ay}{2b}.
\left(-\frac{3a}{2}\right)y+ab=4ab
Tāpiri -\frac{ay}{2} ki te -ay.
\left(-\frac{3a}{2}\right)y=3ab
Me tango ba mai i ngā taha e rua o te whārite.
y=-2b
Whakawehea ngā taha e rua ki te -\frac{3a}{2}.
x=\left(-\frac{a}{2b}\right)\left(-2b\right)+a
Whakaurua te -2b mō y ki x=\left(-\frac{a}{2b}\right)y+a. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=a+a
Whakareatia -\frac{a}{2b} ki te -2b.
x=2a
Tāpiri a ki te a.
x=2a,y=-2b
Kua oti te pūnaha te whakatau.
2bx+ay=2ab,bx+\left(-a\right)y=4ab
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right))\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right))\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2b&a\\b&-a\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right))\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right))\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{a}{2b\left(-a\right)-ab}&-\frac{a}{2b\left(-a\right)-ab}\\-\frac{b}{2b\left(-a\right)-ab}&\frac{2b}{2b\left(-a\right)-ab}\end{matrix}\right)\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3b}&\frac{1}{3b}\\\frac{1}{3a}&-\frac{2}{3a}\end{matrix}\right)\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3b}\times 2ab+\frac{1}{3b}\times 4ab\\\frac{1}{3a}\times 2ab+\left(-\frac{2}{3a}\right)\times 4ab\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2a\\-2b\end{matrix}\right)
Mahia ngā tātaitanga.
x=2a,y=-2b
Tangohia ngā huānga poukapa x me y.
2bx+ay=2ab,bx+\left(-a\right)y=4ab
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
b\times 2bx+bay=b\times 2ab,2bbx+2b\left(-a\right)y=2b\times 4ab
Kia ōrite ai a 2bx me bx, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te b me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2b.
2b^{2}x+aby=2ab^{2},2b^{2}x+\left(-2ab\right)y=8ab^{2}
Whakarūnātia.
2b^{2}x+\left(-2b^{2}\right)x+aby+2aby=2ab^{2}-8ab^{2}
Me tango 2b^{2}x+\left(-2ab\right)y=8ab^{2} mai i 2b^{2}x+aby=2ab^{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
aby+2aby=2ab^{2}-8ab^{2}
Tāpiri 2b^{2}x ki te -2b^{2}x. Ka whakakore atu ngā kupu 2b^{2}x me -2b^{2}x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3aby=2ab^{2}-8ab^{2}
Tāpiri bay ki te 2bay.
3aby=-6ab^{2}
Tāpiri 2ab^{2} ki te -8ab^{2}.
y=-2b
Whakawehea ngā taha e rua ki te 3ba.
bx+\left(-a\right)\left(-2b\right)=4ab
Whakaurua te -2b mō y ki bx+\left(-a\right)y=4ab. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
bx+2ab=4ab
Whakareatia -a ki te -2b.
bx=2ab
Me tango 2ba mai i ngā taha e rua o te whārite.
x=2a
Whakawehea ngā taha e rua ki te b.
x=2a,y=-2b
Kua oti te pūnaha te whakatau.
2bx+ay=2ab,bx+\left(-a\right)y=4ab
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2bx+ay=2ab
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
2bx=\left(-a\right)y+2ab
Me tango ay mai i ngā taha e rua o te whārite.
x=\frac{1}{2b}\left(\left(-a\right)y+2ab\right)
Whakawehea ngā taha e rua ki te 2b.
x=\left(-\frac{a}{2b}\right)y+a
Whakareatia \frac{1}{2b} ki te a\left(-y+2b\right).
b\left(\left(-\frac{a}{2b}\right)y+a\right)+\left(-a\right)y=4ab
Whakakapia te a-\frac{ay}{2b} mō te x ki tērā atu whārite, bx+\left(-a\right)y=4ab.
\left(-\frac{a}{2}\right)y+ab+\left(-a\right)y=4ab
Whakareatia b ki te a-\frac{ay}{2b}.
\left(-\frac{3a}{2}\right)y+ab=4ab
Tāpiri -\frac{ay}{2} ki te -ay.
\left(-\frac{3a}{2}\right)y=3ab
Me tango ba mai i ngā taha e rua o te whārite.
y=-2b
Whakawehea ngā taha e rua ki te -\frac{3a}{2}.
x=\left(-\frac{a}{2b}\right)\left(-2b\right)+a
Whakaurua te -2b mō y ki x=\left(-\frac{a}{2b}\right)y+a. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=a+a
Whakareatia -\frac{a}{2b} ki te -2b.
x=2a
Tāpiri a ki te a.
x=2a,y=-2b
Kua oti te pūnaha te whakatau.
2bx+ay=2ab,bx+\left(-a\right)y=4ab
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right))\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right))\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2b&a\\b&-a\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right))\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2b&a\\b&-a\end{matrix}\right))\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{a}{2b\left(-a\right)-ab}&-\frac{a}{2b\left(-a\right)-ab}\\-\frac{b}{2b\left(-a\right)-ab}&\frac{2b}{2b\left(-a\right)-ab}\end{matrix}\right)\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3b}&\frac{1}{3b}\\\frac{1}{3a}&-\frac{2}{3a}\end{matrix}\right)\left(\begin{matrix}2ab\\4ab\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3b}\times 2ab+\frac{1}{3b}\times 4ab\\\frac{1}{3a}\times 2ab+\left(-\frac{2}{3a}\right)\times 4ab\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2a\\-2b\end{matrix}\right)
Mahia ngā tātaitanga.
x=2a,y=-2b
Tangohia ngā huānga poukapa x me y.
2bx+ay=2ab,bx+\left(-a\right)y=4ab
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
b\times 2bx+bay=b\times 2ab,2bbx+2b\left(-a\right)y=2b\times 4ab
Kia ōrite ai a 2bx me bx, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te b me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2b.
2b^{2}x+aby=2ab^{2},2b^{2}x+\left(-2ab\right)y=8ab^{2}
Whakarūnātia.
2b^{2}x+\left(-2b^{2}\right)x+aby+2aby=2ab^{2}-8ab^{2}
Me tango 2b^{2}x+\left(-2ab\right)y=8ab^{2} mai i 2b^{2}x+aby=2ab^{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
aby+2aby=2ab^{2}-8ab^{2}
Tāpiri 2b^{2}x ki te -2b^{2}x. Ka whakakore atu ngā kupu 2b^{2}x me -2b^{2}x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3aby=2ab^{2}-8ab^{2}
Tāpiri bay ki te 2bay.
3aby=-6ab^{2}
Tāpiri 2ab^{2} ki te -8ab^{2}.
y=-2b
Whakawehea ngā taha e rua ki te 3ba.
bx+\left(-a\right)\left(-2b\right)=4ab
Whakaurua te -2b mō y ki bx+\left(-a\right)y=4ab. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
bx+2ab=4ab
Whakareatia -a ki te -2b.
bx=2ab
Me tango 2ba mai i ngā taha e rua o te whārite.
x=2a
Whakawehea ngā taha e rua ki te b.
x=2a,y=-2b
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}