Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2a+b=5,a+b=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2a+b=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
2a=-b+5
Me tango b mai i ngā taha e rua o te whārite.
a=\frac{1}{2}\left(-b+5\right)
Whakawehea ngā taha e rua ki te 2.
a=-\frac{1}{2}b+\frac{5}{2}
Whakareatia \frac{1}{2} ki te -b+5.
-\frac{1}{2}b+\frac{5}{2}+b=2
Whakakapia te \frac{-b+5}{2} mō te a ki tērā atu whārite, a+b=2.
\frac{1}{2}b+\frac{5}{2}=2
Tāpiri -\frac{b}{2} ki te b.
\frac{1}{2}b=-\frac{1}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
b=-1
Me whakarea ngā taha e rua ki te 2.
a=-\frac{1}{2}\left(-1\right)+\frac{5}{2}
Whakaurua te -1 mō b ki a=-\frac{1}{2}b+\frac{5}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{1+5}{2}
Whakareatia -\frac{1}{2} ki te -1.
a=3
Tāpiri \frac{5}{2} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=3,b=-1
Kua oti te pūnaha te whakatau.
2a+b=5,a+b=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&1\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{2}{2-1}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5-2\\-5+2\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
a=3,b=-1
Tangohia ngā huānga poukapa a me b.
2a+b=5,a+b=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2a-a+b-b=5-2
Me tango a+b=2 mai i 2a+b=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2a-a=5-2
Tāpiri b ki te -b. Ka whakakore atu ngā kupu b me -b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
a=5-2
Tāpiri 2a ki te -a.
a=3
Tāpiri 5 ki te -2.
3+b=2
Whakaurua te 3 mō a ki a+b=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=-1
Me tango 3 mai i ngā taha e rua o te whārite.
a=3,b=-1
Kua oti te pūnaha te whakatau.