Whakaoti mō a, b
a = \frac{7}{4} = 1\frac{3}{4} = 1.75
b = \frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
12\left(2a+12b\right)=129\times 2
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 2.
24a+144b=129\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 2a+12b.
24a+144b=258
Whakareatia te 129 ki te 2, ka 258.
2a+7b=14,24a+144b=258
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2a+7b=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
2a=-7b+14
Me tango 7b mai i ngā taha e rua o te whārite.
a=\frac{1}{2}\left(-7b+14\right)
Whakawehea ngā taha e rua ki te 2.
a=-\frac{7}{2}b+7
Whakareatia \frac{1}{2} ki te -7b+14.
24\left(-\frac{7}{2}b+7\right)+144b=258
Whakakapia te -\frac{7b}{2}+7 mō te a ki tērā atu whārite, 24a+144b=258.
-84b+168+144b=258
Whakareatia 24 ki te -\frac{7b}{2}+7.
60b+168=258
Tāpiri -84b ki te 144b.
60b=90
Me tango 168 mai i ngā taha e rua o te whārite.
b=\frac{3}{2}
Whakawehea ngā taha e rua ki te 60.
a=-\frac{7}{2}\times \frac{3}{2}+7
Whakaurua te \frac{3}{2} mō b ki a=-\frac{7}{2}b+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-\frac{21}{4}+7
Whakareatia -\frac{7}{2} ki te \frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=\frac{7}{4}
Tāpiri 7 ki te -\frac{21}{4}.
a=\frac{7}{4},b=\frac{3}{2}
Kua oti te pūnaha te whakatau.
12\left(2a+12b\right)=129\times 2
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 2.
24a+144b=129\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 2a+12b.
24a+144b=258
Whakareatia te 129 ki te 2, ka 258.
2a+7b=14,24a+144b=258
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&7\\24&144\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}14\\258\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&7\\24&144\end{matrix}\right))\left(\begin{matrix}2&7\\24&144\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\24&144\end{matrix}\right))\left(\begin{matrix}14\\258\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&7\\24&144\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\24&144\end{matrix}\right))\left(\begin{matrix}14\\258\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\24&144\end{matrix}\right))\left(\begin{matrix}14\\258\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{144}{2\times 144-7\times 24}&-\frac{7}{2\times 144-7\times 24}\\-\frac{24}{2\times 144-7\times 24}&\frac{2}{2\times 144-7\times 24}\end{matrix}\right)\left(\begin{matrix}14\\258\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}&-\frac{7}{120}\\-\frac{1}{5}&\frac{1}{60}\end{matrix}\right)\left(\begin{matrix}14\\258\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\times 14-\frac{7}{120}\times 258\\-\frac{1}{5}\times 14+\frac{1}{60}\times 258\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4}\\\frac{3}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{7}{4},b=\frac{3}{2}
Tangohia ngā huānga poukapa a me b.
12\left(2a+12b\right)=129\times 2
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 2.
24a+144b=129\times 2
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te 2a+12b.
24a+144b=258
Whakareatia te 129 ki te 2, ka 258.
2a+7b=14,24a+144b=258
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
24\times 2a+24\times 7b=24\times 14,2\times 24a+2\times 144b=2\times 258
Kia ōrite ai a 2a me 24a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 24 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
48a+168b=336,48a+288b=516
Whakarūnātia.
48a-48a+168b-288b=336-516
Me tango 48a+288b=516 mai i 48a+168b=336 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
168b-288b=336-516
Tāpiri 48a ki te -48a. Ka whakakore atu ngā kupu 48a me -48a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-120b=336-516
Tāpiri 168b ki te -288b.
-120b=-180
Tāpiri 336 ki te -516.
b=\frac{3}{2}
Whakawehea ngā taha e rua ki te -120.
24a+144\times \frac{3}{2}=258
Whakaurua te \frac{3}{2} mō b ki 24a+144b=258. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
24a+216=258
Whakareatia 144 ki te \frac{3}{2}.
24a=42
Me tango 216 mai i ngā taha e rua o te whārite.
a=\frac{7}{4}
Whakawehea ngā taha e rua ki te 24.
a=\frac{7}{4},b=\frac{3}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}