Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2a+3b=0,2a+5b=16
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2a+3b=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
2a=-3b
Me tango 3b mai i ngā taha e rua o te whārite.
a=\frac{1}{2}\left(-3\right)b
Whakawehea ngā taha e rua ki te 2.
a=-\frac{3}{2}b
Whakareatia \frac{1}{2} ki te -3b.
2\left(-\frac{3}{2}\right)b+5b=16
Whakakapia te -\frac{3b}{2} mō te a ki tērā atu whārite, 2a+5b=16.
-3b+5b=16
Whakareatia 2 ki te -\frac{3b}{2}.
2b=16
Tāpiri -3b ki te 5b.
b=8
Whakawehea ngā taha e rua ki te 2.
a=-\frac{3}{2}\times 8
Whakaurua te 8 mō b ki a=-\frac{3}{2}b. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=-12
Whakareatia -\frac{3}{2} ki te 8.
a=-12,b=8
Kua oti te pūnaha te whakatau.
2a+3b=0,2a+5b=16
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&3\\2&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}0\\16\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&3\\2&5\end{matrix}\right))\left(\begin{matrix}2&3\\2&5\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&5\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&3\\2&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&5\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\2&5\end{matrix}\right))\left(\begin{matrix}0\\16\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3\times 2}&-\frac{3}{2\times 5-3\times 2}\\-\frac{2}{2\times 5-3\times 2}&\frac{2}{2\times 5-3\times 2}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}&-\frac{3}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}0\\16\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{4}\times 16\\\frac{1}{2}\times 16\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-12\\8\end{matrix}\right)
Mahia ngā tātaitanga.
a=-12,b=8
Tangohia ngā huānga poukapa a me b.
2a+3b=0,2a+5b=16
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2a-2a+3b-5b=-16
Me tango 2a+5b=16 mai i 2a+3b=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3b-5b=-16
Tāpiri 2a ki te -2a. Ka whakakore atu ngā kupu 2a me -2a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2b=-16
Tāpiri 3b ki te -5b.
b=8
Whakawehea ngā taha e rua ki te -2.
2a+5\times 8=16
Whakaurua te 8 mō b ki 2a+5b=16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
2a+40=16
Whakareatia 5 ki te 8.
2a=-24
Me tango 40 mai i ngā taha e rua o te whārite.
a=-12
Whakawehea ngā taha e rua ki te 2.
a=-12,b=8
Kua oti te pūnaha te whakatau.