Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3x+y=\frac{\frac{1}{2}}{2}
Whakaarohia te whārite tuatahi. Whakawehea ngā taha e rua ki te 2.
3x+y=\frac{1}{2\times 2}
Tuhia te \frac{\frac{1}{2}}{2} hei hautanga kotahi.
3x+y=\frac{1}{4}
Whakareatia te 2 ki te 2, ka 4.
2x+8y=\frac{3}{2}\times 2
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
2x+8y=3
Whakareatia te \frac{3}{2} ki te 2, ka 3.
3x+y=\frac{1}{4},2x+8y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x+y=\frac{1}{4}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=-y+\frac{1}{4}
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{3}\left(-y+\frac{1}{4}\right)
Whakawehea ngā taha e rua ki te 3.
x=-\frac{1}{3}y+\frac{1}{12}
Whakareatia \frac{1}{3} ki te -y+\frac{1}{4}.
2\left(-\frac{1}{3}y+\frac{1}{12}\right)+8y=3
Whakakapia te -\frac{y}{3}+\frac{1}{12} mō te x ki tērā atu whārite, 2x+8y=3.
-\frac{2}{3}y+\frac{1}{6}+8y=3
Whakareatia 2 ki te -\frac{y}{3}+\frac{1}{12}.
\frac{22}{3}y+\frac{1}{6}=3
Tāpiri -\frac{2y}{3} ki te 8y.
\frac{22}{3}y=\frac{17}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
y=\frac{17}{44}
Whakawehea ngā taha e rua o te whārite ki te \frac{22}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{3}\times \frac{17}{44}+\frac{1}{12}
Whakaurua te \frac{17}{44} mō y ki x=-\frac{1}{3}y+\frac{1}{12}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{17}{132}+\frac{1}{12}
Whakareatia -\frac{1}{3} ki te \frac{17}{44} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1}{22}
Tāpiri \frac{1}{12} ki te -\frac{17}{132} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1}{22},y=\frac{17}{44}
Kua oti te pūnaha te whakatau.
3x+y=\frac{\frac{1}{2}}{2}
Whakaarohia te whārite tuatahi. Whakawehea ngā taha e rua ki te 2.
3x+y=\frac{1}{2\times 2}
Tuhia te \frac{\frac{1}{2}}{2} hei hautanga kotahi.
3x+y=\frac{1}{4}
Whakareatia te 2 ki te 2, ka 4.
2x+8y=\frac{3}{2}\times 2
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
2x+8y=3
Whakareatia te \frac{3}{2} ki te 2, ka 3.
3x+y=\frac{1}{4},2x+8y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&1\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&1\\2&8\end{matrix}\right))\left(\begin{matrix}3&1\\2&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&8\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&1\\2&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&8\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&8\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-2}&-\frac{1}{3\times 8-2}\\-\frac{2}{3\times 8-2}&\frac{3}{3\times 8-2}\end{matrix}\right)\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&-\frac{1}{22}\\-\frac{1}{11}&\frac{3}{22}\end{matrix}\right)\left(\begin{matrix}\frac{1}{4}\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times \frac{1}{4}-\frac{1}{22}\times 3\\-\frac{1}{11}\times \frac{1}{4}+\frac{3}{22}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{22}\\\frac{17}{44}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{1}{22},y=\frac{17}{44}
Tangohia ngā huānga poukapa x me y.
3x+y=\frac{\frac{1}{2}}{2}
Whakaarohia te whārite tuatahi. Whakawehea ngā taha e rua ki te 2.
3x+y=\frac{1}{2\times 2}
Tuhia te \frac{\frac{1}{2}}{2} hei hautanga kotahi.
3x+y=\frac{1}{4}
Whakareatia te 2 ki te 2, ka 4.
2x+8y=\frac{3}{2}\times 2
Whakaarohia te whārite tuarua. Me whakarea ngā taha e rua ki te 2, te tau utu o \frac{1}{2}.
2x+8y=3
Whakareatia te \frac{3}{2} ki te 2, ka 3.
3x+y=\frac{1}{4},2x+8y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 3x+2y=2\times \frac{1}{4},3\times 2x+3\times 8y=3\times 3
Kia ōrite ai a 3x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 3.
6x+2y=\frac{1}{2},6x+24y=9
Whakarūnātia.
6x-6x+2y-24y=\frac{1}{2}-9
Me tango 6x+24y=9 mai i 6x+2y=\frac{1}{2} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-24y=\frac{1}{2}-9
Tāpiri 6x ki te -6x. Ka whakakore atu ngā kupu 6x me -6x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-22y=\frac{1}{2}-9
Tāpiri 2y ki te -24y.
-22y=-\frac{17}{2}
Tāpiri \frac{1}{2} ki te -9.
y=\frac{17}{44}
Whakawehea ngā taha e rua ki te -22.
2x+8\times \frac{17}{44}=3
Whakaurua te \frac{17}{44} mō y ki 2x+8y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+\frac{34}{11}=3
Whakareatia 8 ki te \frac{17}{44}.
2x=-\frac{1}{11}
Me tango \frac{34}{11} mai i ngā taha e rua o te whārite.
x=-\frac{1}{22}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{1}{22},y=\frac{17}{44}
Kua oti te pūnaha te whakatau.