Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x=6y
Whakaarohia te whārite tuatahi. Whakareatia te 2 ki te 2, ka 4.
x=\frac{1}{4}\times 6y
Whakawehea ngā taha e rua ki te 4.
x=\frac{3}{2}y
Whakareatia \frac{1}{4} ki te 6y.
4\times \frac{3}{2}y+12y=360
Whakakapia te \frac{3y}{2} mō te x ki tērā atu whārite, 4x+12y=360.
6y+12y=360
Whakareatia 4 ki te \frac{3y}{2}.
18y=360
Tāpiri 6y ki te 12y.
y=20
Whakawehea ngā taha e rua ki te 18.
x=\frac{3}{2}\times 20
Whakaurua te 20 mō y ki x=\frac{3}{2}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=30
Whakareatia \frac{3}{2} ki te 20.
x=30,y=20
Kua oti te pūnaha te whakatau.
4x=6y
Whakaarohia te whārite tuatahi. Whakareatia te 2 ki te 2, ka 4.
4x-6y=0
Tangohia te 6y mai i ngā taha e rua.
4x+12y=360
Whakaarohia te whārite tuarua. Whakareatia te 2 ki te 6, ka 12.
4x-6y=0,4x+12y=360
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-6\\4&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\360\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-6\\4&12\end{matrix}\right))\left(\begin{matrix}4&-6\\4&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&12\end{matrix}\right))\left(\begin{matrix}0\\360\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-6\\4&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&12\end{matrix}\right))\left(\begin{matrix}0\\360\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-6\\4&12\end{matrix}\right))\left(\begin{matrix}0\\360\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{4\times 12-\left(-6\times 4\right)}&-\frac{-6}{4\times 12-\left(-6\times 4\right)}\\-\frac{4}{4\times 12-\left(-6\times 4\right)}&\frac{4}{4\times 12-\left(-6\times 4\right)}\end{matrix}\right)\left(\begin{matrix}0\\360\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{12}\\-\frac{1}{18}&\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}0\\360\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{12}\times 360\\\frac{1}{18}\times 360\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\20\end{matrix}\right)
Mahia ngā tātaitanga.
x=30,y=20
Tangohia ngā huānga poukapa x me y.
4x=6y
Whakaarohia te whārite tuatahi. Whakareatia te 2 ki te 2, ka 4.
4x-6y=0
Tangohia te 6y mai i ngā taha e rua.
4x+12y=360
Whakaarohia te whārite tuarua. Whakareatia te 2 ki te 6, ka 12.
4x-6y=0,4x+12y=360
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-4x-6y-12y=-360
Me tango 4x+12y=360 mai i 4x-6y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y-12y=-360
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-18y=-360
Tāpiri -6y ki te -12y.
y=20
Whakawehea ngā taha e rua ki te -18.
4x+12\times 20=360
Whakaurua te 20 mō y ki 4x+12y=360. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x+240=360
Whakareatia 12 ki te 20.
4x=120
Me tango 240 mai i ngā taha e rua o te whārite.
x=30
Whakawehea ngā taha e rua ki te 4.
x=30,y=20
Kua oti te pūnaha te whakatau.