Whakaoti mō x, y
x=7
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x-y=20-2
Whakaarohia te whārite tuatahi. Tangohia te 2 mai i ngā taha e rua.
3x-y=18
Tangohia te 2 i te 20, ka 18.
x-2-y=2
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
x-y=2+2
Me tāpiri te 2 ki ngā taha e rua.
x-y=4
Tāpirihia te 2 ki te 2, ka 4.
3x-y=18,x-y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
3x-y=18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
3x=y+18
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{3}\left(y+18\right)
Whakawehea ngā taha e rua ki te 3.
x=\frac{1}{3}y+6
Whakareatia \frac{1}{3} ki te y+18.
\frac{1}{3}y+6-y=4
Whakakapia te \frac{y}{3}+6 mō te x ki tērā atu whārite, x-y=4.
-\frac{2}{3}y+6=4
Tāpiri \frac{y}{3} ki te -y.
-\frac{2}{3}y=-2
Me tango 6 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te -\frac{2}{3}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{3}\times 3+6
Whakaurua te 3 mō y ki x=\frac{1}{3}y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+6
Whakareatia \frac{1}{3} ki te 3.
x=7
Tāpiri 6 ki te 1.
x=7,y=3
Kua oti te pūnaha te whakatau.
3x-y=20-2
Whakaarohia te whārite tuatahi. Tangohia te 2 mai i ngā taha e rua.
3x-y=18
Tangohia te 2 i te 20, ka 18.
x-2-y=2
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
x-y=2+2
Me tāpiri te 2 ki ngā taha e rua.
x-y=4
Tāpirihia te 2 ki te 2, ka 4.
3x-y=18,x-y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}18\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}3&-1\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}18\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}18\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}18\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}18\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 18-\frac{1}{2}\times 4\\\frac{1}{2}\times 18-\frac{3}{2}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=3
Tangohia ngā huānga poukapa x me y.
3x-y=20-2
Whakaarohia te whārite tuatahi. Tangohia te 2 mai i ngā taha e rua.
3x-y=18
Tangohia te 2 i te 20, ka 18.
x-2-y=2
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
x-y=2+2
Me tāpiri te 2 ki ngā taha e rua.
x-y=4
Tāpirihia te 2 ki te 2, ka 4.
3x-y=18,x-y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3x-x-y+y=18-4
Me tango x-y=4 mai i 3x-y=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x-x=18-4
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=18-4
Tāpiri 3x ki te -x.
2x=14
Tāpiri 18 ki te -4.
x=7
Whakawehea ngā taha e rua ki te 2.
7-y=4
Whakaurua te 7 mō x ki x-y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-y=-3
Me tango 7 mai i ngā taha e rua o te whārite.
x=7,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}