Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

19x+3y=1,19x+4y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
19x+3y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
19x=-3y+1
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{19}\left(-3y+1\right)
Whakawehea ngā taha e rua ki te 19.
x=-\frac{3}{19}y+\frac{1}{19}
Whakareatia \frac{1}{19} ki te -3y+1.
19\left(-\frac{3}{19}y+\frac{1}{19}\right)+4y=0
Whakakapia te \frac{-3y+1}{19} mō te x ki tērā atu whārite, 19x+4y=0.
-3y+1+4y=0
Whakareatia 19 ki te \frac{-3y+1}{19}.
y+1=0
Tāpiri -3y ki te 4y.
y=-1
Me tango 1 mai i ngā taha e rua o te whārite.
x=-\frac{3}{19}\left(-1\right)+\frac{1}{19}
Whakaurua te -1 mō y ki x=-\frac{3}{19}y+\frac{1}{19}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{3+1}{19}
Whakareatia -\frac{3}{19} ki te -1.
x=\frac{4}{19}
Tāpiri \frac{1}{19} ki te \frac{3}{19} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{19},y=-1
Kua oti te pūnaha te whakatau.
19x+3y=1,19x+4y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}19&3\\19&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}19&3\\19&4\end{matrix}\right))\left(\begin{matrix}19&3\\19&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&3\\19&4\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}19&3\\19&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&3\\19&4\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&3\\19&4\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19\times 4-3\times 19}&-\frac{3}{19\times 4-3\times 19}\\-\frac{19}{19\times 4-3\times 19}&\frac{19}{19\times 4-3\times 19}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}&-\frac{3}{19}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}\\-1\end{matrix}\right)
Whakareatia ngā poukapa.
x=\frac{4}{19},y=-1
Tangohia ngā huānga poukapa x me y.
19x+3y=1,19x+4y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
19x-19x+3y-4y=1
Me tango 19x+4y=0 mai i 19x+3y=1 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-4y=1
Tāpiri 19x ki te -19x. Ka whakakore atu ngā kupu 19x me -19x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=1
Tāpiri 3y ki te -4y.
y=-1
Whakawehea ngā taha e rua ki te -1.
19x+4\left(-1\right)=0
Whakaurua te -1 mō y ki 19x+4y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
19x-4=0
Whakareatia 4 ki te -1.
19x=4
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=\frac{4}{19}
Whakawehea ngā taha e rua ki te 19.
x=\frac{4}{19},y=-1
Kua oti te pūnaha te whakatau.