Whakaoti mō y, x, a
x=80
y=50
a=20
Graph
Tohaina
Kua tāruatia ki te papatopenga
x=180-2y
Me whakaoti te 180=2y+x mō x.
180=2\left(180-2y\right)+a
Whakakapia te 180-2y mō te x i te whārite 180=2x+a.
y=90-2a a=-180+4y
Me whakaoti te whārite tuarua mō y me te whārite tuatoru mō a.
a=-180+4\left(90-2a\right)
Whakakapia te 90-2a mō te y i te whārite a=-180+4y.
a=20
Me whakaoti te a=-180+4\left(90-2a\right) mō a.
y=90-2\times 20
Whakakapia te 20 mō te a i te whārite y=90-2a.
y=50
Tātaitia te y i te y=90-2\times 20.
x=180-2\times 50
Whakakapia te 50 mō te y i te whārite x=180-2y.
x=80
Tātaitia te x i te x=180-2\times 50.
y=50 x=80 a=20
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}