Whakaoti mō x, y
y=30800736
Graph
Tohaina
Kua tāruatia ki te papatopenga
y=18\times 36^{4}+12\times 36^{3}+6\times 36^{2}
Whakaarohia te whārite tuarua. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
y=18\times 1679616+12\times 36^{3}+6\times 36^{2}
Tātaihia te 36 mā te pū o 4, kia riro ko 1679616.
y=30233088+12\times 36^{3}+6\times 36^{2}
Whakareatia te 18 ki te 1679616, ka 30233088.
y=30233088+12\times 46656+6\times 36^{2}
Tātaihia te 36 mā te pū o 3, kia riro ko 46656.
y=30233088+559872+6\times 36^{2}
Whakareatia te 12 ki te 46656, ka 559872.
y=30792960+6\times 36^{2}
Tāpirihia te 30233088 ki te 559872, ka 30792960.
y=30792960+6\times 1296
Tātaihia te 36 mā te pū o 2, kia riro ko 1296.
y=30792960+7776
Whakareatia te 6 ki te 1296, ka 7776.
y=30800736
Tāpirihia te 30792960 ki te 7776, ka 30800736.
x=36 y=30800736
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}