Whakaoti mō x, y
x=\frac{1}{120}\approx 0.008333333
y=\frac{1}{200}=0.005
Graph
Tohaina
Kua tāruatia ki te papatopenga
1200x+1600y=18
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
600x+2400y=17
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1200x+1600y=18,600x+2400y=17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
1200x+1600y=18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
1200x=-1600y+18
Me tango 1600y mai i ngā taha e rua o te whārite.
x=\frac{1}{1200}\left(-1600y+18\right)
Whakawehea ngā taha e rua ki te 1200.
x=-\frac{4}{3}y+\frac{3}{200}
Whakareatia \frac{1}{1200} ki te -1600y+18.
600\left(-\frac{4}{3}y+\frac{3}{200}\right)+2400y=17
Whakakapia te -\frac{4y}{3}+\frac{3}{200} mō te x ki tērā atu whārite, 600x+2400y=17.
-800y+9+2400y=17
Whakareatia 600 ki te -\frac{4y}{3}+\frac{3}{200}.
1600y+9=17
Tāpiri -800y ki te 2400y.
1600y=8
Me tango 9 mai i ngā taha e rua o te whārite.
y=\frac{1}{200}
Whakawehea ngā taha e rua ki te 1600.
x=-\frac{4}{3}\times \frac{1}{200}+\frac{3}{200}
Whakaurua te \frac{1}{200} mō y ki x=-\frac{4}{3}y+\frac{3}{200}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{150}+\frac{3}{200}
Whakareatia -\frac{4}{3} ki te \frac{1}{200} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{120}
Tāpiri \frac{3}{200} ki te -\frac{1}{150} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{120},y=\frac{1}{200}
Kua oti te pūnaha te whakatau.
1200x+1600y=18
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
600x+2400y=17
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1200x+1600y=18,600x+2400y=17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1200&1600\\600&2400\end{matrix}\right))\left(\begin{matrix}18\\17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2400}{1200\times 2400-1600\times 600}&-\frac{1600}{1200\times 2400-1600\times 600}\\-\frac{600}{1200\times 2400-1600\times 600}&\frac{1200}{1200\times 2400-1600\times 600}\end{matrix}\right)\left(\begin{matrix}18\\17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{800}&-\frac{1}{1200}\\-\frac{1}{3200}&\frac{1}{1600}\end{matrix}\right)\left(\begin{matrix}18\\17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{800}\times 18-\frac{1}{1200}\times 17\\-\frac{1}{3200}\times 18+\frac{1}{1600}\times 17\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{120}\\\frac{1}{200}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{120},y=\frac{1}{200}
Tangohia ngā huānga poukapa x me y.
1200x+1600y=18
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
600x+2400y=17
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
1200x+1600y=18,600x+2400y=17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
600\times 1200x+600\times 1600y=600\times 18,1200\times 600x+1200\times 2400y=1200\times 17
Kia ōrite ai a 1200x me 600x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 600 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1200.
720000x+960000y=10800,720000x+2880000y=20400
Whakarūnātia.
720000x-720000x+960000y-2880000y=10800-20400
Me tango 720000x+2880000y=20400 mai i 720000x+960000y=10800 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
960000y-2880000y=10800-20400
Tāpiri 720000x ki te -720000x. Ka whakakore atu ngā kupu 720000x me -720000x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-1920000y=10800-20400
Tāpiri 960000y ki te -2880000y.
-1920000y=-9600
Tāpiri 10800 ki te -20400.
y=\frac{1}{200}
Whakawehea ngā taha e rua ki te -1920000.
600x+2400\times \frac{1}{200}=17
Whakaurua te \frac{1}{200} mō y ki 600x+2400y=17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
600x+12=17
Whakareatia 2400 ki te \frac{1}{200}.
600x=5
Me tango 12 mai i ngā taha e rua o te whārite.
x=\frac{1}{120}
Whakawehea ngā taha e rua ki te 600.
x=\frac{1}{120},y=\frac{1}{200}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}