Whakaoti mō x, y
x = -\frac{1725}{352} = -4\frac{317}{352} \approx -4.900568182
y = \frac{1955}{352} = 5\frac{195}{352} \approx 5.553977273
Graph
Tohaina
Kua tāruatia ki te papatopenga
15x+17y=\frac{230}{11},17x+15y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
15x+17y=\frac{230}{11}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
15x=-17y+\frac{230}{11}
Me tango 17y mai i ngā taha e rua o te whārite.
x=\frac{1}{15}\left(-17y+\frac{230}{11}\right)
Whakawehea ngā taha e rua ki te 15.
x=-\frac{17}{15}y+\frac{46}{33}
Whakareatia \frac{1}{15} ki te -17y+\frac{230}{11}.
17\left(-\frac{17}{15}y+\frac{46}{33}\right)+15y=0
Whakakapia te -\frac{17y}{15}+\frac{46}{33} mō te x ki tērā atu whārite, 17x+15y=0.
-\frac{289}{15}y+\frac{782}{33}+15y=0
Whakareatia 17 ki te -\frac{17y}{15}+\frac{46}{33}.
-\frac{64}{15}y+\frac{782}{33}=0
Tāpiri -\frac{289y}{15} ki te 15y.
-\frac{64}{15}y=-\frac{782}{33}
Me tango \frac{782}{33} mai i ngā taha e rua o te whārite.
y=\frac{1955}{352}
Whakawehea ngā taha e rua o te whārite ki te -\frac{64}{15}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{17}{15}\times \frac{1955}{352}+\frac{46}{33}
Whakaurua te \frac{1955}{352} mō y ki x=-\frac{17}{15}y+\frac{46}{33}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{6647}{1056}+\frac{46}{33}
Whakareatia -\frac{17}{15} ki te \frac{1955}{352} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1725}{352}
Tāpiri \frac{46}{33} ki te -\frac{6647}{1056} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1725}{352},y=\frac{1955}{352}
Kua oti te pūnaha te whakatau.
15x+17y=\frac{230}{11},17x+15y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}15&17\\17&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{230}{11}\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}15&17\\17&15\end{matrix}\right))\left(\begin{matrix}15&17\\17&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&17\\17&15\end{matrix}\right))\left(\begin{matrix}\frac{230}{11}\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}15&17\\17&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&17\\17&15\end{matrix}\right))\left(\begin{matrix}\frac{230}{11}\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}15&17\\17&15\end{matrix}\right))\left(\begin{matrix}\frac{230}{11}\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15\times 15-17\times 17}&-\frac{17}{15\times 15-17\times 17}\\-\frac{17}{15\times 15-17\times 17}&\frac{15}{15\times 15-17\times 17}\end{matrix}\right)\left(\begin{matrix}\frac{230}{11}\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{64}&\frac{17}{64}\\\frac{17}{64}&-\frac{15}{64}\end{matrix}\right)\left(\begin{matrix}\frac{230}{11}\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{64}\times \frac{230}{11}\\\frac{17}{64}\times \frac{230}{11}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1725}{352}\\\frac{1955}{352}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{1725}{352},y=\frac{1955}{352}
Tangohia ngā huānga poukapa x me y.
15x+17y=\frac{230}{11},17x+15y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
17\times 15x+17\times 17y=17\times \frac{230}{11},15\times 17x+15\times 15y=0
Kia ōrite ai a 15x me 17x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 17 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 15.
255x+289y=\frac{3910}{11},255x+225y=0
Whakarūnātia.
255x-255x+289y-225y=\frac{3910}{11}
Me tango 255x+225y=0 mai i 255x+289y=\frac{3910}{11} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
289y-225y=\frac{3910}{11}
Tāpiri 255x ki te -255x. Ka whakakore atu ngā kupu 255x me -255x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
64y=\frac{3910}{11}
Tāpiri 289y ki te -225y.
y=\frac{1955}{352}
Whakawehea ngā taha e rua ki te 64.
17x+15\times \frac{1955}{352}=0
Whakaurua te \frac{1955}{352} mō y ki 17x+15y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
17x+\frac{29325}{352}=0
Whakareatia 15 ki te \frac{1955}{352}.
17x=-\frac{29325}{352}
Me tango \frac{29325}{352} mai i ngā taha e rua o te whārite.
x=-\frac{1725}{352}
Whakawehea ngā taha e rua ki te 17.
x=-\frac{1725}{352},y=\frac{1955}{352}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}