\left. \begin{array} { l } { 15 + 12 : 4 - 3 \times 2 } \\ { 2 \times ( 2 + 3 ) - 20 : ( 1 + 3 ) } \end{array} \right.
Kōmaka
5,12
Aromātai
12,\ 5
Tohaina
Kua tāruatia ki te papatopenga
sort(15+3-3\times 2,2\left(2+3\right)-\frac{20}{1+3})
Whakawehea te 12 ki te 4, kia riro ko 3.
sort(18-3\times 2,2\left(2+3\right)-\frac{20}{1+3})
Tāpirihia te 15 ki te 3, ka 18.
sort(18-6,2\left(2+3\right)-\frac{20}{1+3})
Whakareatia te 3 ki te 2, ka 6.
sort(12,2\left(2+3\right)-\frac{20}{1+3})
Tangohia te 6 i te 18, ka 12.
sort(12,2\times 5-\frac{20}{1+3})
Tāpirihia te 2 ki te 3, ka 5.
sort(12,10-\frac{20}{1+3})
Whakareatia te 2 ki te 5, ka 10.
sort(12,10-\frac{20}{4})
Tāpirihia te 1 ki te 3, ka 4.
sort(12,10-5)
Whakawehea te 20 ki te 4, kia riro ko 5.
sort(12,5)
Tangohia te 5 i te 10, ka 5.
12
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga 12 kotahi.
5,12
Me kōkuhu te 5 ki te tauwāhi tika i te rārangi hōu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}