Whakaoti mō x, y
x = \frac{122}{79} = 1\frac{43}{79} \approx 1.544303797
y=-\frac{51}{79}\approx -0.64556962
Graph
Tohaina
Kua tāruatia ki te papatopenga
8x-y=13
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x-10y=8
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8x-y=13,x-10y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
8x-y=13
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
8x=y+13
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{8}\left(y+13\right)
Whakawehea ngā taha e rua ki te 8.
x=\frac{1}{8}y+\frac{13}{8}
Whakareatia \frac{1}{8} ki te y+13.
\frac{1}{8}y+\frac{13}{8}-10y=8
Whakakapia te \frac{13+y}{8} mō te x ki tērā atu whārite, x-10y=8.
-\frac{79}{8}y+\frac{13}{8}=8
Tāpiri \frac{y}{8} ki te -10y.
-\frac{79}{8}y=\frac{51}{8}
Me tango \frac{13}{8} mai i ngā taha e rua o te whārite.
y=-\frac{51}{79}
Whakawehea ngā taha e rua o te whārite ki te -\frac{79}{8}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{8}\left(-\frac{51}{79}\right)+\frac{13}{8}
Whakaurua te -\frac{51}{79} mō y ki x=\frac{1}{8}y+\frac{13}{8}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{51}{632}+\frac{13}{8}
Whakareatia \frac{1}{8} ki te -\frac{51}{79} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{122}{79}
Tāpiri \frac{13}{8} ki te -\frac{51}{632} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{122}{79},y=-\frac{51}{79}
Kua oti te pūnaha te whakatau.
8x-y=13
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x-10y=8
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8x-y=13,x-10y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}8&-1\\1&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}8&-1\\1&-10\end{matrix}\right))\left(\begin{matrix}8&-1\\1&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-1\\1&-10\end{matrix}\right))\left(\begin{matrix}13\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}8&-1\\1&-10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-1\\1&-10\end{matrix}\right))\left(\begin{matrix}13\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&-1\\1&-10\end{matrix}\right))\left(\begin{matrix}13\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{8\left(-10\right)-\left(-1\right)}&-\frac{-1}{8\left(-10\right)-\left(-1\right)}\\-\frac{1}{8\left(-10\right)-\left(-1\right)}&\frac{8}{8\left(-10\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}13\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{79}&-\frac{1}{79}\\\frac{1}{79}&-\frac{8}{79}\end{matrix}\right)\left(\begin{matrix}13\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{79}\times 13-\frac{1}{79}\times 8\\\frac{1}{79}\times 13-\frac{8}{79}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{122}{79}\\-\frac{51}{79}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{122}{79},y=-\frac{51}{79}
Tangohia ngā huānga poukapa x me y.
8x-y=13
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x-10y=8
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
8x-y=13,x-10y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8x-y=13,8x+8\left(-10\right)y=8\times 8
Kia ōrite ai a 8x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 8.
8x-y=13,8x-80y=64
Whakarūnātia.
8x-8x-y+80y=13-64
Me tango 8x-80y=64 mai i 8x-y=13 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+80y=13-64
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
79y=13-64
Tāpiri -y ki te 80y.
79y=-51
Tāpiri 13 ki te -64.
y=-\frac{51}{79}
Whakawehea ngā taha e rua ki te 79.
x-10\left(-\frac{51}{79}\right)=8
Whakaurua te -\frac{51}{79} mō y ki x-10y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x+\frac{510}{79}=8
Whakareatia -10 ki te -\frac{51}{79}.
x=\frac{122}{79}
Me tango \frac{510}{79} mai i ngā taha e rua o te whārite.
x=\frac{122}{79},y=-\frac{51}{79}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}