Aromātai
\frac{159}{28}\approx 5.678571429
Tauwehe
\frac{3 \cdot 53}{7 \cdot 2 ^ {2}} = 5\frac{19}{28} = 5.678571428571429
Tohaina
Kua tāruatia ki te papatopenga
\frac{25}{2}\times \frac{5}{18}-\frac{5}{14}\times \frac{5}{18}+8.3\times \frac{5}{18}
Me tahuri ki tau ā-ira 12.5 ki te hautau \frac{125}{10}. Whakahekea te hautanga \frac{125}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{25\times 5}{2\times 18}-\frac{5}{14}\times \frac{5}{18}+8.3\times \frac{5}{18}
Me whakarea te \frac{25}{2} ki te \frac{5}{18} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{125}{36}-\frac{5}{14}\times \frac{5}{18}+8.3\times \frac{5}{18}
Mahia ngā whakarea i roto i te hautanga \frac{25\times 5}{2\times 18}.
\frac{125}{36}-\frac{5\times 5}{14\times 18}+8.3\times \frac{5}{18}
Me whakarea te \frac{5}{14} ki te \frac{5}{18} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{125}{36}-\frac{25}{252}+8.3\times \frac{5}{18}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 5}{14\times 18}.
\frac{875}{252}-\frac{25}{252}+8.3\times \frac{5}{18}
Ko te maha noa iti rawa atu o 36 me 252 ko 252. Me tahuri \frac{125}{36} me \frac{25}{252} ki te hautau me te tautūnga 252.
\frac{875-25}{252}+8.3\times \frac{5}{18}
Tā te mea he rite te tauraro o \frac{875}{252} me \frac{25}{252}, me tango rāua mā te tango i ō raua taurunga.
\frac{850}{252}+8.3\times \frac{5}{18}
Tangohia te 25 i te 875, ka 850.
\frac{425}{126}+8.3\times \frac{5}{18}
Whakahekea te hautanga \frac{850}{252} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{425}{126}+\frac{83}{10}\times \frac{5}{18}
Me tahuri ki tau ā-ira 8.3 ki te hautau \frac{83}{10}.
\frac{425}{126}+\frac{83\times 5}{10\times 18}
Me whakarea te \frac{83}{10} ki te \frac{5}{18} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{425}{126}+\frac{415}{180}
Mahia ngā whakarea i roto i te hautanga \frac{83\times 5}{10\times 18}.
\frac{425}{126}+\frac{83}{36}
Whakahekea te hautanga \frac{415}{180} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{850}{252}+\frac{581}{252}
Ko te maha noa iti rawa atu o 126 me 36 ko 252. Me tahuri \frac{425}{126} me \frac{83}{36} ki te hautau me te tautūnga 252.
\frac{850+581}{252}
Tā te mea he rite te tauraro o \frac{850}{252} me \frac{581}{252}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1431}{252}
Tāpirihia te 850 ki te 581, ka 1431.
\frac{159}{28}
Whakahekea te hautanga \frac{1431}{252} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}