Whakaoti mō x, y
x=\frac{16}{39}\approx 0.41025641
y=\frac{7}{26}\approx 0.269230769
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x+4y=6,9x+16y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
12x+4y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
12x=-4y+6
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{12}\left(-4y+6\right)
Whakawehea ngā taha e rua ki te 12.
x=-\frac{1}{3}y+\frac{1}{2}
Whakareatia \frac{1}{12} ki te -4y+6.
9\left(-\frac{1}{3}y+\frac{1}{2}\right)+16y=8
Whakakapia te -\frac{y}{3}+\frac{1}{2} mō te x ki tērā atu whārite, 9x+16y=8.
-3y+\frac{9}{2}+16y=8
Whakareatia 9 ki te -\frac{y}{3}+\frac{1}{2}.
13y+\frac{9}{2}=8
Tāpiri -3y ki te 16y.
13y=\frac{7}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=\frac{7}{26}
Whakawehea ngā taha e rua ki te 13.
x=-\frac{1}{3}\times \frac{7}{26}+\frac{1}{2}
Whakaurua te \frac{7}{26} mō y ki x=-\frac{1}{3}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{7}{78}+\frac{1}{2}
Whakareatia -\frac{1}{3} ki te \frac{7}{26} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{16}{39}
Tāpiri \frac{1}{2} ki te -\frac{7}{78} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{16}{39},y=\frac{7}{26}
Kua oti te pūnaha te whakatau.
12x+4y=6,9x+16y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}12&4\\9&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}12&4\\9&16\end{matrix}\right))\left(\begin{matrix}12&4\\9&16\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\9&16\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}12&4\\9&16\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\9&16\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\9&16\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{12\times 16-4\times 9}&-\frac{4}{12\times 16-4\times 9}\\-\frac{9}{12\times 16-4\times 9}&\frac{12}{12\times 16-4\times 9}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}&-\frac{1}{39}\\-\frac{3}{52}&\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{39}\times 6-\frac{1}{39}\times 8\\-\frac{3}{52}\times 6+\frac{1}{13}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{39}\\\frac{7}{26}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{16}{39},y=\frac{7}{26}
Tangohia ngā huānga poukapa x me y.
12x+4y=6,9x+16y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9\times 12x+9\times 4y=9\times 6,12\times 9x+12\times 16y=12\times 8
Kia ōrite ai a 12x me 9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 12.
108x+36y=54,108x+192y=96
Whakarūnātia.
108x-108x+36y-192y=54-96
Me tango 108x+192y=96 mai i 108x+36y=54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
36y-192y=54-96
Tāpiri 108x ki te -108x. Ka whakakore atu ngā kupu 108x me -108x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-156y=54-96
Tāpiri 36y ki te -192y.
-156y=-42
Tāpiri 54 ki te -96.
y=\frac{7}{26}
Whakawehea ngā taha e rua ki te -156.
9x+16\times \frac{7}{26}=8
Whakaurua te \frac{7}{26} mō y ki 9x+16y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
9x+\frac{56}{13}=8
Whakareatia 16 ki te \frac{7}{26}.
9x=\frac{48}{13}
Me tango \frac{56}{13} mai i ngā taha e rua o te whārite.
x=\frac{16}{39}
Whakawehea ngā taha e rua ki te 9.
x=\frac{16}{39},y=\frac{7}{26}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}