Whakaoti mō x, y
x = -\frac{40}{3} = -13\frac{1}{3} \approx -13.333333333
y=55
Graph
Tohaina
Kua tāruatia ki te papatopenga
12x+3y=5,3x+2y=70
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
12x+3y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
12x=-3y+5
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{12}\left(-3y+5\right)
Whakawehea ngā taha e rua ki te 12.
x=-\frac{1}{4}y+\frac{5}{12}
Whakareatia \frac{1}{12} ki te -3y+5.
3\left(-\frac{1}{4}y+\frac{5}{12}\right)+2y=70
Whakakapia te -\frac{y}{4}+\frac{5}{12} mō te x ki tērā atu whārite, 3x+2y=70.
-\frac{3}{4}y+\frac{5}{4}+2y=70
Whakareatia 3 ki te -\frac{y}{4}+\frac{5}{12}.
\frac{5}{4}y+\frac{5}{4}=70
Tāpiri -\frac{3y}{4} ki te 2y.
\frac{5}{4}y=\frac{275}{4}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
y=55
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\times 55+\frac{5}{12}
Whakaurua te 55 mō y ki x=-\frac{1}{4}y+\frac{5}{12}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{55}{4}+\frac{5}{12}
Whakareatia -\frac{1}{4} ki te 55.
x=-\frac{40}{3}
Tāpiri \frac{5}{12} ki te -\frac{55}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{40}{3},y=55
Kua oti te pūnaha te whakatau.
12x+3y=5,3x+2y=70
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}12&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\70\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}12&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}12&3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{12\times 2-3\times 3}&-\frac{3}{12\times 2-3\times 3}\\-\frac{3}{12\times 2-3\times 3}&\frac{12}{12\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}&-\frac{1}{5}\\-\frac{1}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}\times 5-\frac{1}{5}\times 70\\-\frac{1}{5}\times 5+\frac{4}{5}\times 70\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{40}{3}\\55\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{40}{3},y=55
Tangohia ngā huānga poukapa x me y.
12x+3y=5,3x+2y=70
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 12x+3\times 3y=3\times 5,12\times 3x+12\times 2y=12\times 70
Kia ōrite ai a 12x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 12.
36x+9y=15,36x+24y=840
Whakarūnātia.
36x-36x+9y-24y=15-840
Me tango 36x+24y=840 mai i 36x+9y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y-24y=15-840
Tāpiri 36x ki te -36x. Ka whakakore atu ngā kupu 36x me -36x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-15y=15-840
Tāpiri 9y ki te -24y.
-15y=-825
Tāpiri 15 ki te -840.
y=55
Whakawehea ngā taha e rua ki te -15.
3x+2\times 55=70
Whakaurua te 55 mō y ki 3x+2y=70. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+110=70
Whakareatia 2 ki te 55.
3x=-40
Me tango 110 mai i ngā taha e rua o te whārite.
x=-\frac{40}{3}
Whakawehea ngā taha e rua ki te 3.
x=-\frac{40}{3},y=55
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}