Tīpoka ki ngā ihirangi matua
Whakaoti mō a, b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

12a+4b=-4,3a-9b=-21
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
12a+4b=-4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
12a=-4b-4
Me tango 4b mai i ngā taha e rua o te whārite.
a=\frac{1}{12}\left(-4b-4\right)
Whakawehea ngā taha e rua ki te 12.
a=-\frac{1}{3}b-\frac{1}{3}
Whakareatia \frac{1}{12} ki te -4b-4.
3\left(-\frac{1}{3}b-\frac{1}{3}\right)-9b=-21
Whakakapia te \frac{-b-1}{3} mō te a ki tērā atu whārite, 3a-9b=-21.
-b-1-9b=-21
Whakareatia 3 ki te \frac{-b-1}{3}.
-10b-1=-21
Tāpiri -b ki te -9b.
-10b=-20
Me tāpiri 1 ki ngā taha e rua o te whārite.
b=2
Whakawehea ngā taha e rua ki te -10.
a=-\frac{1}{3}\times 2-\frac{1}{3}
Whakaurua te 2 mō b ki a=-\frac{1}{3}b-\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{-2-1}{3}
Whakareatia -\frac{1}{3} ki te 2.
a=-1
Tāpiri -\frac{1}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a=-1,b=2
Kua oti te pūnaha te whakatau.
12a+4b=-4,3a-9b=-21
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}12&4\\3&-9\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-4\\-21\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}12&4\\3&-9\end{matrix}\right))\left(\begin{matrix}12&4\\3&-9\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\3&-9\end{matrix}\right))\left(\begin{matrix}-4\\-21\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}12&4\\3&-9\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\3&-9\end{matrix}\right))\left(\begin{matrix}-4\\-21\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\3&-9\end{matrix}\right))\left(\begin{matrix}-4\\-21\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{12\left(-9\right)-4\times 3}&-\frac{4}{12\left(-9\right)-4\times 3}\\-\frac{3}{12\left(-9\right)-4\times 3}&\frac{12}{12\left(-9\right)-4\times 3}\end{matrix}\right)\left(\begin{matrix}-4\\-21\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{40}&\frac{1}{30}\\\frac{1}{40}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-4\\-21\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{40}\left(-4\right)+\frac{1}{30}\left(-21\right)\\\frac{1}{40}\left(-4\right)-\frac{1}{10}\left(-21\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
a=-1,b=2
Tangohia ngā huānga poukapa a me b.
12a+4b=-4,3a-9b=-21
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 12a+3\times 4b=3\left(-4\right),12\times 3a+12\left(-9\right)b=12\left(-21\right)
Kia ōrite ai a 12a me 3a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 12.
36a+12b=-12,36a-108b=-252
Whakarūnātia.
36a-36a+12b+108b=-12+252
Me tango 36a-108b=-252 mai i 36a+12b=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12b+108b=-12+252
Tāpiri 36a ki te -36a. Ka whakakore atu ngā kupu 36a me -36a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
120b=-12+252
Tāpiri 12b ki te 108b.
120b=240
Tāpiri -12 ki te 252.
b=2
Whakawehea ngā taha e rua ki te 120.
3a-9\times 2=-21
Whakaurua te 2 mō b ki 3a-9b=-21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
3a-18=-21
Whakareatia -9 ki te 2.
3a=-3
Me tāpiri 18 ki ngā taha e rua o te whārite.
a=-1
Whakawehea ngā taha e rua ki te 3.
a=-1,b=2
Kua oti te pūnaha te whakatau.