Whakaoti mō x, y
x=-28
y=63
Graph
Tohaina
Kua tāruatia ki te papatopenga
11x+5y=7,6x+3y=21
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
11x+5y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
11x=-5y+7
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{11}\left(-5y+7\right)
Whakawehea ngā taha e rua ki te 11.
x=-\frac{5}{11}y+\frac{7}{11}
Whakareatia \frac{1}{11} ki te -5y+7.
6\left(-\frac{5}{11}y+\frac{7}{11}\right)+3y=21
Whakakapia te \frac{-5y+7}{11} mō te x ki tērā atu whārite, 6x+3y=21.
-\frac{30}{11}y+\frac{42}{11}+3y=21
Whakareatia 6 ki te \frac{-5y+7}{11}.
\frac{3}{11}y+\frac{42}{11}=21
Tāpiri -\frac{30y}{11} ki te 3y.
\frac{3}{11}y=\frac{189}{11}
Me tango \frac{42}{11} mai i ngā taha e rua o te whārite.
y=63
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{11}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{11}\times 63+\frac{7}{11}
Whakaurua te 63 mō y ki x=-\frac{5}{11}y+\frac{7}{11}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-315+7}{11}
Whakareatia -\frac{5}{11} ki te 63.
x=-28
Tāpiri \frac{7}{11} ki te -\frac{315}{11} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-28,y=63
Kua oti te pūnaha te whakatau.
11x+5y=7,6x+3y=21
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}11&5\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\21\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}11&5\\6&3\end{matrix}\right))\left(\begin{matrix}11&5\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&5\\6&3\end{matrix}\right))\left(\begin{matrix}7\\21\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}11&5\\6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&5\\6&3\end{matrix}\right))\left(\begin{matrix}7\\21\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&5\\6&3\end{matrix}\right))\left(\begin{matrix}7\\21\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11\times 3-5\times 6}&-\frac{5}{11\times 3-5\times 6}\\-\frac{6}{11\times 3-5\times 6}&\frac{11}{11\times 3-5\times 6}\end{matrix}\right)\left(\begin{matrix}7\\21\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{5}{3}\\-2&\frac{11}{3}\end{matrix}\right)\left(\begin{matrix}7\\21\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7-\frac{5}{3}\times 21\\-2\times 7+\frac{11}{3}\times 21\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-28\\63\end{matrix}\right)
Mahia ngā tātaitanga.
x=-28,y=63
Tangohia ngā huānga poukapa x me y.
11x+5y=7,6x+3y=21
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 11x+6\times 5y=6\times 7,11\times 6x+11\times 3y=11\times 21
Kia ōrite ai a 11x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 11.
66x+30y=42,66x+33y=231
Whakarūnātia.
66x-66x+30y-33y=42-231
Me tango 66x+33y=231 mai i 66x+30y=42 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
30y-33y=42-231
Tāpiri 66x ki te -66x. Ka whakakore atu ngā kupu 66x me -66x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=42-231
Tāpiri 30y ki te -33y.
-3y=-189
Tāpiri 42 ki te -231.
y=63
Whakawehea ngā taha e rua ki te -3.
6x+3\times 63=21
Whakaurua te 63 mō y ki 6x+3y=21. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x+189=21
Whakareatia 3 ki te 63.
6x=-168
Me tango 189 mai i ngā taha e rua o te whārite.
x=-28
Whakawehea ngā taha e rua ki te 6.
x=-28,y=63
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}