Whakaoti mō x, y
x=1
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
11x+3y=14,x+7y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
11x+3y=14
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
11x=-3y+14
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{11}\left(-3y+14\right)
Whakawehea ngā taha e rua ki te 11.
x=-\frac{3}{11}y+\frac{14}{11}
Whakareatia \frac{1}{11} ki te -3y+14.
-\frac{3}{11}y+\frac{14}{11}+7y=8
Whakakapia te \frac{-3y+14}{11} mō te x ki tērā atu whārite, x+7y=8.
\frac{74}{11}y+\frac{14}{11}=8
Tāpiri -\frac{3y}{11} ki te 7y.
\frac{74}{11}y=\frac{74}{11}
Me tango \frac{14}{11} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te \frac{74}{11}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-3+14}{11}
Whakaurua te 1 mō y ki x=-\frac{3}{11}y+\frac{14}{11}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Tāpiri \frac{14}{11} ki te -\frac{3}{11} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=1
Kua oti te pūnaha te whakatau.
11x+3y=14,x+7y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}11&3\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}11&3\\1&7\end{matrix}\right))\left(\begin{matrix}11&3\\1&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\1&7\end{matrix}\right))\left(\begin{matrix}14\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}11&3\\1&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\1&7\end{matrix}\right))\left(\begin{matrix}14\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}11&3\\1&7\end{matrix}\right))\left(\begin{matrix}14\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{11\times 7-3}&-\frac{3}{11\times 7-3}\\-\frac{1}{11\times 7-3}&\frac{11}{11\times 7-3}\end{matrix}\right)\left(\begin{matrix}14\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{74}&-\frac{3}{74}\\-\frac{1}{74}&\frac{11}{74}\end{matrix}\right)\left(\begin{matrix}14\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{74}\times 14-\frac{3}{74}\times 8\\-\frac{1}{74}\times 14+\frac{11}{74}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=1
Tangohia ngā huānga poukapa x me y.
11x+3y=14,x+7y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
11x+3y=14,11x+11\times 7y=11\times 8
Kia ōrite ai a 11x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 11.
11x+3y=14,11x+77y=88
Whakarūnātia.
11x-11x+3y-77y=14-88
Me tango 11x+77y=88 mai i 11x+3y=14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-77y=14-88
Tāpiri 11x ki te -11x. Ka whakakore atu ngā kupu 11x me -11x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-74y=14-88
Tāpiri 3y ki te -77y.
-74y=-74
Tāpiri 14 ki te -88.
y=1
Whakawehea ngā taha e rua ki te -74.
x+7=8
Whakaurua te 1 mō y ki x+7y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1
Me tango 7 mai i ngā taha e rua o te whārite.
x=1,y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}