Whakaoti mō x, y
x=\frac{23}{29}\approx 0.793103448
y = -\frac{68}{29} = -2\frac{10}{29} \approx -2.344827586
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x-6y=22,8x+y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x-6y=22
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=6y+22
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=\frac{1}{10}\left(6y+22\right)
Whakawehea ngā taha e rua ki te 10.
x=\frac{3}{5}y+\frac{11}{5}
Whakareatia \frac{1}{10} ki te 6y+22.
8\left(\frac{3}{5}y+\frac{11}{5}\right)+y=4
Whakakapia te \frac{3y+11}{5} mō te x ki tērā atu whārite, 8x+y=4.
\frac{24}{5}y+\frac{88}{5}+y=4
Whakareatia 8 ki te \frac{3y+11}{5}.
\frac{29}{5}y+\frac{88}{5}=4
Tāpiri \frac{24y}{5} ki te y.
\frac{29}{5}y=-\frac{68}{5}
Me tango \frac{88}{5} mai i ngā taha e rua o te whārite.
y=-\frac{68}{29}
Whakawehea ngā taha e rua o te whārite ki te \frac{29}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{3}{5}\left(-\frac{68}{29}\right)+\frac{11}{5}
Whakaurua te -\frac{68}{29} mō y ki x=\frac{3}{5}y+\frac{11}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{204}{145}+\frac{11}{5}
Whakareatia \frac{3}{5} ki te -\frac{68}{29} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{23}{29}
Tāpiri \frac{11}{5} ki te -\frac{204}{145} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{23}{29},y=-\frac{68}{29}
Kua oti te pūnaha te whakatau.
10x-6y=22,8x+y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&-6\\8&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&-6\\8&1\end{matrix}\right))\left(\begin{matrix}10&-6\\8&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-6\\8&1\end{matrix}\right))\left(\begin{matrix}22\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&-6\\8&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-6\\8&1\end{matrix}\right))\left(\begin{matrix}22\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-6\\8&1\end{matrix}\right))\left(\begin{matrix}22\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-\left(-6\times 8\right)}&-\frac{-6}{10-\left(-6\times 8\right)}\\-\frac{8}{10-\left(-6\times 8\right)}&\frac{10}{10-\left(-6\times 8\right)}\end{matrix}\right)\left(\begin{matrix}22\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{58}&\frac{3}{29}\\-\frac{4}{29}&\frac{5}{29}\end{matrix}\right)\left(\begin{matrix}22\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{58}\times 22+\frac{3}{29}\times 4\\-\frac{4}{29}\times 22+\frac{5}{29}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{23}{29}\\-\frac{68}{29}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{23}{29},y=-\frac{68}{29}
Tangohia ngā huānga poukapa x me y.
10x-6y=22,8x+y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 10x+8\left(-6\right)y=8\times 22,10\times 8x+10y=10\times 4
Kia ōrite ai a 10x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 10.
80x-48y=176,80x+10y=40
Whakarūnātia.
80x-80x-48y-10y=176-40
Me tango 80x+10y=40 mai i 80x-48y=176 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-48y-10y=176-40
Tāpiri 80x ki te -80x. Ka whakakore atu ngā kupu 80x me -80x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-58y=176-40
Tāpiri -48y ki te -10y.
-58y=136
Tāpiri 176 ki te -40.
y=-\frac{68}{29}
Whakawehea ngā taha e rua ki te -58.
8x-\frac{68}{29}=4
Whakaurua te -\frac{68}{29} mō y ki 8x+y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x=\frac{184}{29}
Me tāpiri \frac{68}{29} ki ngā taha e rua o te whārite.
x=\frac{23}{29}
Whakawehea ngā taha e rua ki te 8.
x=\frac{23}{29},y=-\frac{68}{29}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}