Whakaoti mō x, y
x=-4
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x+4y=-12,-9x-5y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x+4y=-12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=-4y-12
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{10}\left(-4y-12\right)
Whakawehea ngā taha e rua ki te 10.
x=-\frac{2}{5}y-\frac{6}{5}
Whakareatia \frac{1}{10} ki te -4y-12.
-9\left(-\frac{2}{5}y-\frac{6}{5}\right)-5y=1
Whakakapia te \frac{-2y-6}{5} mō te x ki tērā atu whārite, -9x-5y=1.
\frac{18}{5}y+\frac{54}{5}-5y=1
Whakareatia -9 ki te \frac{-2y-6}{5}.
-\frac{7}{5}y+\frac{54}{5}=1
Tāpiri \frac{18y}{5} ki te -5y.
-\frac{7}{5}y=-\frac{49}{5}
Me tango \frac{54}{5} mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te -\frac{7}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\times 7-\frac{6}{5}
Whakaurua te 7 mō y ki x=-\frac{2}{5}y-\frac{6}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-14-6}{5}
Whakareatia -\frac{2}{5} ki te 7.
x=-4
Tāpiri -\frac{6}{5} ki te -\frac{14}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-4,y=7
Kua oti te pūnaha te whakatau.
10x+4y=-12,-9x-5y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&4\\-9&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&4\\-9&-5\end{matrix}\right))\left(\begin{matrix}-12\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{10\left(-5\right)-4\left(-9\right)}&-\frac{4}{10\left(-5\right)-4\left(-9\right)}\\-\frac{-9}{10\left(-5\right)-4\left(-9\right)}&\frac{10}{10\left(-5\right)-4\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}&\frac{2}{7}\\-\frac{9}{14}&-\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}-12\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{14}\left(-12\right)+\frac{2}{7}\\-\frac{9}{14}\left(-12\right)-\frac{5}{7}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=-4,y=7
Tangohia ngā huānga poukapa x me y.
10x+4y=-12,-9x-5y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-9\times 10x-9\times 4y=-9\left(-12\right),10\left(-9\right)x+10\left(-5\right)y=10
Kia ōrite ai a 10x me -9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 10.
-90x-36y=108,-90x-50y=10
Whakarūnātia.
-90x+90x-36y+50y=108-10
Me tango -90x-50y=10 mai i -90x-36y=108 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-36y+50y=108-10
Tāpiri -90x ki te 90x. Ka whakakore atu ngā kupu -90x me 90x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
14y=108-10
Tāpiri -36y ki te 50y.
14y=98
Tāpiri 108 ki te -10.
y=7
Whakawehea ngā taha e rua ki te 14.
-9x-5\times 7=1
Whakaurua te 7 mō y ki -9x-5y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-9x-35=1
Whakareatia -5 ki te 7.
-9x=36
Me tāpiri 35 ki ngā taha e rua o te whārite.
x=-4
Whakawehea ngā taha e rua ki te -9.
x=-4,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}