Whakaoti mō x, y
x=10
y=-25
Graph
Tohaina
Kua tāruatia ki te papatopenga
10x+2y=50,7x+2y=20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
10x+2y=50
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
10x=-2y+50
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{10}\left(-2y+50\right)
Whakawehea ngā taha e rua ki te 10.
x=-\frac{1}{5}y+5
Whakareatia \frac{1}{10} ki te -2y+50.
7\left(-\frac{1}{5}y+5\right)+2y=20
Whakakapia te -\frac{y}{5}+5 mō te x ki tērā atu whārite, 7x+2y=20.
-\frac{7}{5}y+35+2y=20
Whakareatia 7 ki te -\frac{y}{5}+5.
\frac{3}{5}y+35=20
Tāpiri -\frac{7y}{5} ki te 2y.
\frac{3}{5}y=-15
Me tango 35 mai i ngā taha e rua o te whārite.
y=-25
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{5}\left(-25\right)+5
Whakaurua te -25 mō y ki x=-\frac{1}{5}y+5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5+5
Whakareatia -\frac{1}{5} ki te -25.
x=10
Tāpiri 5 ki te 5.
x=10,y=-25
Kua oti te pūnaha te whakatau.
10x+2y=50,7x+2y=20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}10&2\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}10&2\\7&2\end{matrix}\right))\left(\begin{matrix}10&2\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\7&2\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}10&2\\7&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\7&2\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\7&2\end{matrix}\right))\left(\begin{matrix}50\\20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{10\times 2-2\times 7}&-\frac{2}{10\times 2-2\times 7}\\-\frac{7}{10\times 2-2\times 7}&\frac{10}{10\times 2-2\times 7}\end{matrix}\right)\left(\begin{matrix}50\\20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\-\frac{7}{6}&\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}50\\20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 50-\frac{1}{3}\times 20\\-\frac{7}{6}\times 50+\frac{5}{3}\times 20\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-25\end{matrix}\right)
Mahia ngā tātaitanga.
x=10,y=-25
Tangohia ngā huānga poukapa x me y.
10x+2y=50,7x+2y=20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10x-7x+2y-2y=50-20
Me tango 7x+2y=20 mai i 10x+2y=50 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
10x-7x=50-20
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3x=50-20
Tāpiri 10x ki te -7x.
3x=30
Tāpiri 50 ki te -20.
x=10
Whakawehea ngā taha e rua ki te 3.
7\times 10+2y=20
Whakaurua te 10 mō x ki 7x+2y=20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
70+2y=20
Whakareatia 7 ki te 10.
2y=-50
Me tango 70 mai i ngā taha e rua o te whārite.
y=-25
Whakawehea ngā taha e rua ki te 2.
x=10,y=-25
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}