\left. \begin{array} { l } { 1,25 - 4 \frac { 1 } { 12 } } \\ { - 2 \frac { 1 } { 2 } - 3.4 } \end{array} \right.
Kōmaka
1,\frac{901}{60}
Aromātai
1,\frac{901}{60}
Tohaina
Kua tāruatia ki te papatopenga
sort(1,25-\frac{48+1}{12}-\frac{2\times 2+1}{2}-3.4)
Whakareatia te 4 ki te 12, ka 48.
sort(1,25-\frac{49}{12}-\frac{2\times 2+1}{2}-3.4)
Tāpirihia te 48 ki te 1, ka 49.
sort(1,\frac{300}{12}-\frac{49}{12}-\frac{2\times 2+1}{2}-3.4)
Me tahuri te 25 ki te hautau \frac{300}{12}.
sort(1,\frac{300-49}{12}-\frac{2\times 2+1}{2}-3.4)
Tā te mea he rite te tauraro o \frac{300}{12} me \frac{49}{12}, me tango rāua mā te tango i ō raua taurunga.
sort(1,\frac{251}{12}-\frac{2\times 2+1}{2}-3.4)
Tangohia te 49 i te 300, ka 251.
sort(1,\frac{251}{12}-\frac{4+1}{2}-3.4)
Whakareatia te 2 ki te 2, ka 4.
sort(1,\frac{251}{12}-\frac{5}{2}-3.4)
Tāpirihia te 4 ki te 1, ka 5.
sort(1,\frac{251}{12}-\frac{30}{12}-3.4)
Ko te maha noa iti rawa atu o 12 me 2 ko 12. Me tahuri \frac{251}{12} me \frac{5}{2} ki te hautau me te tautūnga 12.
sort(1,\frac{251-30}{12}-3.4)
Tā te mea he rite te tauraro o \frac{251}{12} me \frac{30}{12}, me tango rāua mā te tango i ō raua taurunga.
sort(1,\frac{221}{12}-3.4)
Tangohia te 30 i te 251, ka 221.
sort(1,\frac{221}{12}-\frac{17}{5})
Me tahuri ki tau ā-ira 3.4 ki te hautau \frac{34}{10}. Whakahekea te hautanga \frac{34}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
sort(1,\frac{1105}{60}-\frac{204}{60})
Ko te maha noa iti rawa atu o 12 me 5 ko 60. Me tahuri \frac{221}{12} me \frac{17}{5} ki te hautau me te tautūnga 60.
sort(1,\frac{1105-204}{60})
Tā te mea he rite te tauraro o \frac{1105}{60} me \frac{204}{60}, me tango rāua mā te tango i ō raua taurunga.
sort(1,\frac{901}{60})
Tangohia te 204 i te 1105, ka 901.
1,\frac{901}{60}
Tahuritia ngā tau ā-ira i te rārangi 1,\frac{901}{60} ki ngā hautanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}