Whakaoti mō x, y
x = \frac{72}{5} = 14\frac{2}{5} = 14.4
y = \frac{332}{5} = 66\frac{2}{5} = 66.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+4y=280,4x+y=124
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
x+4y=280
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
x=-4y+280
Me tango 4y mai i ngā taha e rua o te whārite.
4\left(-4y+280\right)+y=124
Whakakapia te -4y+280 mō te x ki tērā atu whārite, 4x+y=124.
-16y+1120+y=124
Whakareatia 4 ki te -4y+280.
-15y+1120=124
Tāpiri -16y ki te y.
-15y=-996
Me tango 1120 mai i ngā taha e rua o te whārite.
y=\frac{332}{5}
Whakawehea ngā taha e rua ki te -15.
x=-4\times \frac{332}{5}+280
Whakaurua te \frac{332}{5} mō y ki x=-4y+280. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1328}{5}+280
Whakareatia -4 ki te \frac{332}{5}.
x=\frac{72}{5}
Tāpiri 280 ki te -\frac{1328}{5}.
x=\frac{72}{5},y=\frac{332}{5}
Kua oti te pūnaha te whakatau.
x+4y=280,4x+y=124
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}280\\124\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&4\\4&1\end{matrix}\right))\left(\begin{matrix}1&4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&1\end{matrix}\right))\left(\begin{matrix}280\\124\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&4\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&1\end{matrix}\right))\left(\begin{matrix}280\\124\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\4&1\end{matrix}\right))\left(\begin{matrix}280\\124\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-4\times 4}&-\frac{4}{1-4\times 4}\\-\frac{4}{1-4\times 4}&\frac{1}{1-4\times 4}\end{matrix}\right)\left(\begin{matrix}280\\124\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}&\frac{4}{15}\\\frac{4}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}280\\124\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{15}\times 280+\frac{4}{15}\times 124\\\frac{4}{15}\times 280-\frac{1}{15}\times 124\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{72}{5}\\\frac{332}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{72}{5},y=\frac{332}{5}
Tangohia ngā huānga poukapa x me y.
x+4y=280,4x+y=124
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+4\times 4y=4\times 280,4x+y=124
Kia ōrite ai a x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
4x+16y=1120,4x+y=124
Whakarūnātia.
4x-4x+16y-y=1120-124
Me tango 4x+y=124 mai i 4x+16y=1120 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16y-y=1120-124
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
15y=1120-124
Tāpiri 16y ki te -y.
15y=996
Tāpiri 1120 ki te -124.
y=\frac{332}{5}
Whakawehea ngā taha e rua ki te 15.
4x+\frac{332}{5}=124
Whakaurua te \frac{332}{5} mō y ki 4x+y=124. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=\frac{288}{5}
Me tango \frac{332}{5} mai i ngā taha e rua o te whārite.
x=\frac{72}{5}
Whakawehea ngā taha e rua ki te 4.
x=\frac{72}{5},y=\frac{332}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}