Whakaoti mō x, y
x = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
y = -\frac{32}{3} = -10\frac{2}{3} \approx -10.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
-14y-147+2y=-19
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te -2y-21.
-12y-147=-19
Pahekotia te -14y me 2y, ka -12y.
-12y=-19+147
Me tāpiri te 147 ki ngā taha e rua.
-12y=128
Tāpirihia te -19 ki te 147, ka 128.
y=\frac{128}{-12}
Whakawehea ngā taha e rua ki te -12.
y=-\frac{32}{3}
Whakahekea te hautanga \frac{128}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
1x+2\left(-\frac{32}{3}\right)=-14
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
1x-\frac{64}{3}=-14
Whakareatia te 2 ki te -\frac{32}{3}, ka -\frac{64}{3}.
1x=-14+\frac{64}{3}
Me tāpiri te \frac{64}{3} ki ngā taha e rua.
1x=\frac{22}{3}
Tāpirihia te -14 ki te \frac{64}{3}, ka \frac{22}{3}.
x=\frac{\frac{22}{3}}{1}
Whakawehea ngā taha e rua ki te 1.
x=\frac{22}{3\times 1}
Tuhia te \frac{\frac{22}{3}}{1} hei hautanga kotahi.
x=\frac{22}{3}
Whakareatia te 3 ki te 1, ka 3.
x=\frac{22}{3} y=-\frac{32}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}