Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-14y-147+2y=-19
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te -2y-21.
-12y-147=-19
Pahekotia te -14y me 2y, ka -12y.
-12y=-19+147
Me tāpiri te 147 ki ngā taha e rua.
-12y=128
Tāpirihia te -19 ki te 147, ka 128.
y=\frac{128}{-12}
Whakawehea ngā taha e rua ki te -12.
y=-\frac{32}{3}
Whakahekea te hautanga \frac{128}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
1x+2\left(-\frac{32}{3}\right)=-14
Whakaarohia te whārite tuatahi. Me kōkuhu ngā uara tāupe mōhiotia ki te whārite.
1x-\frac{64}{3}=-14
Whakareatia te 2 ki te -\frac{32}{3}, ka -\frac{64}{3}.
1x=-14+\frac{64}{3}
Me tāpiri te \frac{64}{3} ki ngā taha e rua.
1x=\frac{22}{3}
Tāpirihia te -14 ki te \frac{64}{3}, ka \frac{22}{3}.
x=\frac{\frac{22}{3}}{1}
Whakawehea ngā taha e rua ki te 1.
x=\frac{22}{3\times 1}
Tuhia te \frac{\frac{22}{3}}{1} hei hautanga kotahi.
x=\frac{22}{3}
Whakareatia te 3 ki te 1, ka 3.
x=\frac{22}{3} y=-\frac{32}{3}
Kua oti te pūnaha te whakatau.