Whakaoti mō c, V
c=9000
V=7500
Tohaina
Kua tāruatia ki te papatopenga
c+V=16500,2c+3V=40500
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
c+V=16500
Kōwhiria tētahi o ngā whārite ka whakaotia mō te c mā te wehe i te c i te taha mauī o te tohu ōrite.
c=-V+16500
Me tango V mai i ngā taha e rua o te whārite.
2\left(-V+16500\right)+3V=40500
Whakakapia te -V+16500 mō te c ki tērā atu whārite, 2c+3V=40500.
-2V+33000+3V=40500
Whakareatia 2 ki te -V+16500.
V+33000=40500
Tāpiri -2V ki te 3V.
V=7500
Me tango 33000 mai i ngā taha e rua o te whārite.
c=-7500+16500
Whakaurua te 7500 mō V ki c=-V+16500. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
c=9000
Tāpiri 16500 ki te -7500.
c=9000,V=7500
Kua oti te pūnaha te whakatau.
c+V=16500,2c+3V=40500
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}16500\\40500\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}1&1\\2&3\end{matrix}\right)\left(\begin{matrix}c\\V\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}16500\\40500\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}c\\V\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}16500\\40500\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}c\\V\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&3\end{matrix}\right))\left(\begin{matrix}16500\\40500\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{1}{3-2}\end{matrix}\right)\left(\begin{matrix}16500\\40500\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}3&-1\\-2&1\end{matrix}\right)\left(\begin{matrix}16500\\40500\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}3\times 16500-40500\\-2\times 16500+40500\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}c\\V\end{matrix}\right)=\left(\begin{matrix}9000\\7500\end{matrix}\right)
Mahia ngā tātaitanga.
c=9000,V=7500
Tangohia ngā huānga poukapa c me V.
c+V=16500,2c+3V=40500
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2c+2V=2\times 16500,2c+3V=40500
Kia ōrite ai a c me 2c, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
2c+2V=33000,2c+3V=40500
Whakarūnātia.
2c-2c+2V-3V=33000-40500
Me tango 2c+3V=40500 mai i 2c+2V=33000 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2V-3V=33000-40500
Tāpiri 2c ki te -2c. Ka whakakore atu ngā kupu 2c me -2c, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-V=33000-40500
Tāpiri 2V ki te -3V.
-V=-7500
Tāpiri 33000 ki te -40500.
V=7500
Whakawehea ngā taha e rua ki te -1.
2c+3\times 7500=40500
Whakaurua te 7500 mō V ki 2c+3V=40500. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
2c+22500=40500
Whakareatia 3 ki te 7500.
2c=18000
Me tango 22500 mai i ngā taha e rua o te whārite.
c=9000
Whakawehea ngā taha e rua ki te 2.
c=9000,V=7500
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}