\left. \begin{array} { l } { 1 \sqrt { 169 } + \sqrt { 121 } } \\ { \sqrt[ 3 ] { 125 } + \sqrt { 144 } } \end{array} \right.
Kōmaka
17,24
Aromātai
24,\ 17
Tohaina
Kua tāruatia ki te papatopenga
sort(1\times 13+\sqrt{121},\sqrt[3]{125}+\sqrt{144})
Tātaitia te pūtakerua o 169 kia tae ki 13.
sort(13+\sqrt{121},\sqrt[3]{125}+\sqrt{144})
Whakareatia te 1 ki te 13, ka 13.
sort(13+11,\sqrt[3]{125}+\sqrt{144})
Tātaitia te pūtakerua o 121 kia tae ki 11.
sort(24,\sqrt[3]{125}+\sqrt{144})
Tāpirihia te 13 ki te 11, ka 24.
sort(24,5+\sqrt{144})
Tātaitia te \sqrt[3]{125} kia tae ki 5.
sort(24,5+12)
Tātaitia te pūtakerua o 144 kia tae ki 12.
sort(24,17)
Tāpirihia te 5 ki te 12, ka 17.
24
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga 24 kotahi.
17,24
Me kōkuhu te 17 ki te tauwāhi tika i te rārangi hōu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}