\left. \begin{array} { l } { 1 \frac { 3 } { 4 } \cdot \frac { 8 } { 11 } + ( 2 \frac { 5 } { 12 } - \frac { 7 } { 24 } ) \cdot 3 } \\ { ( 3 \frac { 1 } { 3 } + \frac { 7 } { 12 } ) : 4 + \frac { 2 } { 7 } \cdot \frac { 21 } { 48 } } \end{array} \right.
Kōmaka
\frac{53}{48},\frac{673}{88}
Aromātai
\frac{673}{88},\ \frac{53}{48}
Tohaina
Kua tāruatia ki te papatopenga
sort(\frac{4+3}{4}\times \frac{8}{11}+\left(\frac{2\times 12+5}{12}-\frac{7}{24}\right)\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Whakareatia te 1 ki te 4, ka 4.
sort(\frac{7}{4}\times \frac{8}{11}+\left(\frac{2\times 12+5}{12}-\frac{7}{24}\right)\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tāpirihia te 4 ki te 3, ka 7.
sort(\frac{7\times 8}{4\times 11}+\left(\frac{2\times 12+5}{12}-\frac{7}{24}\right)\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Me whakarea te \frac{7}{4} ki te \frac{8}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
sort(\frac{56}{44}+\left(\frac{2\times 12+5}{12}-\frac{7}{24}\right)\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Mahia ngā whakarea i roto i te hautanga \frac{7\times 8}{4\times 11}.
sort(\frac{14}{11}+\left(\frac{2\times 12+5}{12}-\frac{7}{24}\right)\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Whakahekea te hautanga \frac{56}{44} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
sort(\frac{14}{11}+\left(\frac{24+5}{12}-\frac{7}{24}\right)\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Whakareatia te 2 ki te 12, ka 24.
sort(\frac{14}{11}+\left(\frac{29}{12}-\frac{7}{24}\right)\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tāpirihia te 24 ki te 5, ka 29.
sort(\frac{14}{11}+\left(\frac{58}{24}-\frac{7}{24}\right)\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Ko te maha noa iti rawa atu o 12 me 24 ko 24. Me tahuri \frac{29}{12} me \frac{7}{24} ki te hautau me te tautūnga 24.
sort(\frac{14}{11}+\frac{58-7}{24}\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tā te mea he rite te tauraro o \frac{58}{24} me \frac{7}{24}, me tango rāua mā te tango i ō raua taurunga.
sort(\frac{14}{11}+\frac{51}{24}\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tangohia te 7 i te 58, ka 51.
sort(\frac{14}{11}+\frac{17}{8}\times 3,\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Whakahekea te hautanga \frac{51}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
sort(\frac{14}{11}+\frac{17\times 3}{8},\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tuhia te \frac{17}{8}\times 3 hei hautanga kotahi.
sort(\frac{14}{11}+\frac{51}{8},\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Whakareatia te 17 ki te 3, ka 51.
sort(\frac{112}{88}+\frac{561}{88},\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Ko te maha noa iti rawa atu o 11 me 8 ko 88. Me tahuri \frac{14}{11} me \frac{51}{8} ki te hautau me te tautūnga 88.
sort(\frac{112+561}{88},\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tā te mea he rite te tauraro o \frac{112}{88} me \frac{561}{88}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
sort(\frac{673}{88},\frac{\frac{3\times 3+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tāpirihia te 112 ki te 561, ka 673.
sort(\frac{673}{88},\frac{\frac{9+1}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Whakareatia te 3 ki te 3, ka 9.
sort(\frac{673}{88},\frac{\frac{10}{3}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tāpirihia te 9 ki te 1, ka 10.
sort(\frac{673}{88},\frac{\frac{40}{12}+\frac{7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Ko te maha noa iti rawa atu o 3 me 12 ko 12. Me tahuri \frac{10}{3} me \frac{7}{12} ki te hautau me te tautūnga 12.
sort(\frac{673}{88},\frac{\frac{40+7}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tā te mea he rite te tauraro o \frac{40}{12} me \frac{7}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
sort(\frac{673}{88},\frac{\frac{47}{12}}{4}+\frac{2}{7}\times \frac{21}{48})
Tāpirihia te 40 ki te 7, ka 47.
sort(\frac{673}{88},\frac{47}{12\times 4}+\frac{2}{7}\times \frac{21}{48})
Tuhia te \frac{\frac{47}{12}}{4} hei hautanga kotahi.
sort(\frac{673}{88},\frac{47}{48}+\frac{2}{7}\times \frac{21}{48})
Whakareatia te 12 ki te 4, ka 48.
sort(\frac{673}{88},\frac{47}{48}+\frac{2}{7}\times \frac{7}{16})
Whakahekea te hautanga \frac{21}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
sort(\frac{673}{88},\frac{47}{48}+\frac{2\times 7}{7\times 16})
Me whakarea te \frac{2}{7} ki te \frac{7}{16} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
sort(\frac{673}{88},\frac{47}{48}+\frac{2}{16})
Me whakakore tahi te 7 i te taurunga me te tauraro.
sort(\frac{673}{88},\frac{47}{48}+\frac{1}{8})
Whakahekea te hautanga \frac{2}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
sort(\frac{673}{88},\frac{47}{48}+\frac{6}{48})
Ko te maha noa iti rawa atu o 48 me 8 ko 48. Me tahuri \frac{47}{48} me \frac{1}{8} ki te hautau me te tautūnga 48.
sort(\frac{673}{88},\frac{47+6}{48})
Tā te mea he rite te tauraro o \frac{47}{48} me \frac{6}{48}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
sort(\frac{673}{88},\frac{53}{48})
Tāpirihia te 47 ki te 6, ka 53.
\frac{4038}{528},\frac{583}{528}
Ko te tauraro noa iti rawa atu o ngā tau i te rārangi \frac{673}{88},\frac{53}{48} ko 528. Tahuritia ngā tau i te rārangi ki te hautanga me te tauraro 528.
\frac{4038}{528}
Hei kōmaka i te rārangi, me tīmata mai i tētahi huānga \frac{4038}{528} kotahi.
\frac{583}{528},\frac{4038}{528}
Me kōkuhu te \frac{583}{528} ki te tauwāhi tika i te rārangi hōu.
\frac{53}{48},\frac{673}{88}
Whakakapia ngā hautanga i whiwhi ki ngā uara tīmata.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}