Whakaoti mō a, b
a=\frac{1}{2}=0.5
b=\frac{1}{2}=0.5
Tohaina
Kua tāruatia ki te papatopenga
a+b=1
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3a-b=1
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=1,3a-b=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
a+b=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a mā te wehe i te a i te taha mauī o te tohu ōrite.
a=-b+1
Me tango b mai i ngā taha e rua o te whārite.
3\left(-b+1\right)-b=1
Whakakapia te -b+1 mō te a ki tērā atu whārite, 3a-b=1.
-3b+3-b=1
Whakareatia 3 ki te -b+1.
-4b+3=1
Tāpiri -3b ki te -b.
-4b=-2
Me tango 3 mai i ngā taha e rua o te whārite.
b=\frac{1}{2}
Whakawehea ngā taha e rua ki te -4.
a=-\frac{1}{2}+1
Whakaurua te \frac{1}{2} mō b ki a=-b+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
a=\frac{1}{2}
Tāpiri 1 ki te -\frac{1}{2}.
a=\frac{1}{2},b=\frac{1}{2}
Kua oti te pūnaha te whakatau.
a+b=1
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3a-b=1
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=1,3a-b=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}1&1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3}&-\frac{1}{-1-3}\\-\frac{3}{-1-3}&\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1+1}{4}\\\frac{3-1}{4}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
a=\frac{1}{2},b=\frac{1}{2}
Tangohia ngā huānga poukapa a me b.
a+b=1
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3a-b=1
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
a+b=1,3a-b=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3a+3b=3,3a-b=1
Kia ōrite ai a a me 3a, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 1.
3a-3a+3b+b=3-1
Me tango 3a-b=1 mai i 3a+3b=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3b+b=3-1
Tāpiri 3a ki te -3a. Ka whakakore atu ngā kupu 3a me -3a, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
4b=3-1
Tāpiri 3b ki te b.
4b=2
Tāpiri 3 ki te -1.
b=\frac{1}{2}
Whakawehea ngā taha e rua ki te 4.
3a-\frac{1}{2}=1
Whakaurua te \frac{1}{2} mō b ki 3a-b=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a hāngai tonu.
3a=\frac{3}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
a=\frac{1}{2}
Whakawehea ngā taha e rua ki te 3.
a=\frac{1}{2},b=\frac{1}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}