Tīpoka ki ngā ihirangi matua
Whakaoti mō r, s
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2r-3s=1
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3r+2s=4
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2r-3s=1,3r+2s=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
2r-3s=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te r mā te wehe i te r i te taha mauī o te tohu ōrite.
2r=3s+1
Me tāpiri 3s ki ngā taha e rua o te whārite.
r=\frac{1}{2}\left(3s+1\right)
Whakawehea ngā taha e rua ki te 2.
r=\frac{3}{2}s+\frac{1}{2}
Whakareatia \frac{1}{2} ki te 3s+1.
3\left(\frac{3}{2}s+\frac{1}{2}\right)+2s=4
Whakakapia te \frac{3s+1}{2} mō te r ki tērā atu whārite, 3r+2s=4.
\frac{9}{2}s+\frac{3}{2}+2s=4
Whakareatia 3 ki te \frac{3s+1}{2}.
\frac{13}{2}s+\frac{3}{2}=4
Tāpiri \frac{9s}{2} ki te 2s.
\frac{13}{2}s=\frac{5}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
s=\frac{5}{13}
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
r=\frac{3}{2}\times \frac{5}{13}+\frac{1}{2}
Whakaurua te \frac{5}{13} mō s ki r=\frac{3}{2}s+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō r hāngai tonu.
r=\frac{15}{26}+\frac{1}{2}
Whakareatia \frac{3}{2} ki te \frac{5}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
r=\frac{14}{13}
Tāpiri \frac{1}{2} ki te \frac{15}{26} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
r=\frac{14}{13},s=\frac{5}{13}
Kua oti te pūnaha te whakatau.
2r-3s=1
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3r+2s=4
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2r-3s=1,3r+2s=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}2&-3\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}+\frac{3}{13}\times 4\\-\frac{3}{13}+\frac{2}{13}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{14}{13}\\\frac{5}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
r=\frac{14}{13},s=\frac{5}{13}
Tangohia ngā huānga poukapa r me s.
2r-3s=1
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3r+2s=4
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2r-3s=1,3r+2s=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 2r+3\left(-3\right)s=3,2\times 3r+2\times 2s=2\times 4
Kia ōrite ai a 2r me 3r, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 2.
6r-9s=3,6r+4s=8
Whakarūnātia.
6r-6r-9s-4s=3-8
Me tango 6r+4s=8 mai i 6r-9s=3 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9s-4s=3-8
Tāpiri 6r ki te -6r. Ka whakakore atu ngā kupu 6r me -6r, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13s=3-8
Tāpiri -9s ki te -4s.
-13s=-5
Tāpiri 3 ki te -8.
s=\frac{5}{13}
Whakawehea ngā taha e rua ki te -13.
3r+2\times \frac{5}{13}=4
Whakaurua te \frac{5}{13} mō s ki 3r+2s=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō r hāngai tonu.
3r+\frac{10}{13}=4
Whakareatia 2 ki te \frac{5}{13}.
3r=\frac{42}{13}
Me tango \frac{10}{13} mai i ngā taha e rua o te whārite.
r=\frac{14}{13}
Whakawehea ngā taha e rua ki te 3.
r=\frac{14}{13},s=\frac{5}{13}
Kua oti te pūnaha te whakatau.