Aromātai
\frac{2148271}{720720}\approx 2.980728993
Tauwehe
\frac{103 \cdot 20857}{2 ^ {4} \cdot 3 ^ {2} \cdot 5 \cdot 7 \cdot 11 \cdot 13} = 2\frac{706831}{720720} = 2.9807289932289933
Tohaina
Kua tāruatia ki te papatopenga
\frac{2}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Me tahuri te 1 ki te hautau \frac{2}{2}.
\frac{2+1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{2}{2} me \frac{1}{2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 2 ki te 1, ka 3.
\frac{9}{6}+\frac{2}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{3}{2} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{9+2}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{9}{6} me \frac{2}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{11}{6}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 9 ki te 2, ka 11.
\frac{22}{12}+\frac{3}{12}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{11}{6} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{22+3}{12}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{22}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25}{12}-\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 22 ki te 3, ka 25.
\frac{125}{60}-\frac{12}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 12 me 5 ko 60. Me tahuri \frac{25}{12} me \frac{1}{5} ki te hautau me te tautūnga 60.
\frac{125-12}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{125}{60} me \frac{12}{60}, me tango rāua mā te tango i ō raua taurunga.
\frac{113}{60}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tangohia te 12 i te 125, ka 113.
\frac{113}{60}+\frac{10}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 60 me 6 ko 60. Me tahuri \frac{113}{60} me \frac{1}{6} ki te hautau me te tautūnga 60.
\frac{113+10}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{113}{60} me \frac{10}{60}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{123}{60}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 113 ki te 10, ka 123.
\frac{41}{20}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Whakahekea te hautanga \frac{123}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{287}{140}+\frac{20}{140}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 20 me 7 ko 140. Me tahuri \frac{41}{20} me \frac{1}{7} ki te hautau me te tautūnga 140.
\frac{287+20}{140}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{287}{140} me \frac{20}{140}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{307}{140}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 287 ki te 20, ka 307.
\frac{614}{280}+\frac{35}{280}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 140 me 8 ko 280. Me tahuri \frac{307}{140} me \frac{1}{8} ki te hautau me te tautūnga 280.
\frac{614+35}{280}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{614}{280} me \frac{35}{280}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{649}{280}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 614 ki te 35, ka 649.
\frac{5841}{2520}+\frac{280}{2520}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 280 me 9 ko 2520. Me tahuri \frac{649}{280} me \frac{1}{9} ki te hautau me te tautūnga 2520.
\frac{5841+280}{2520}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{5841}{2520} me \frac{280}{2520}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6121}{2520}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 5841 ki te 280, ka 6121.
\frac{6121}{2520}+\frac{252}{2520}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 2520 me 10 ko 2520. Me tahuri \frac{6121}{2520} me \frac{1}{10} ki te hautau me te tautūnga 2520.
\frac{6121+252}{2520}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{6121}{2520} me \frac{252}{2520}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6373}{2520}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 6121 ki te 252, ka 6373.
\frac{70103}{27720}+\frac{2520}{27720}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 2520 me 11 ko 27720. Me tahuri \frac{6373}{2520} me \frac{1}{11} ki te hautau me te tautūnga 27720.
\frac{70103+2520}{27720}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{70103}{27720} me \frac{2520}{27720}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{72623}{27720}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 70103 ki te 2520, ka 72623.
\frac{72623}{27720}+\frac{2310}{27720}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 27720 me 12 ko 27720. Me tahuri \frac{72623}{27720} me \frac{1}{12} ki te hautau me te tautūnga 27720.
\frac{72623+2310}{27720}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{72623}{27720} me \frac{2310}{27720}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{74933}{27720}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 72623 ki te 2310, ka 74933.
\frac{974129}{360360}+\frac{27720}{360360}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 27720 me 13 ko 360360. Me tahuri \frac{74933}{27720} me \frac{1}{13} ki te hautau me te tautūnga 360360.
\frac{974129+27720}{360360}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{974129}{360360} me \frac{27720}{360360}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1001849}{360360}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 974129 ki te 27720, ka 1001849.
\frac{1001849}{360360}+\frac{25740}{360360}+\frac{1}{15}+\frac{1}{16}
Ko te maha noa iti rawa atu o 360360 me 14 ko 360360. Me tahuri \frac{1001849}{360360} me \frac{1}{14} ki te hautau me te tautūnga 360360.
\frac{1001849+25740}{360360}+\frac{1}{15}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{1001849}{360360} me \frac{25740}{360360}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1027589}{360360}+\frac{1}{15}+\frac{1}{16}
Tāpirihia te 1001849 ki te 25740, ka 1027589.
\frac{1027589}{360360}+\frac{24024}{360360}+\frac{1}{16}
Ko te maha noa iti rawa atu o 360360 me 15 ko 360360. Me tahuri \frac{1027589}{360360} me \frac{1}{15} ki te hautau me te tautūnga 360360.
\frac{1027589+24024}{360360}+\frac{1}{16}
Tā te mea he rite te tauraro o \frac{1027589}{360360} me \frac{24024}{360360}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1051613}{360360}+\frac{1}{16}
Tāpirihia te 1027589 ki te 24024, ka 1051613.
\frac{2103226}{720720}+\frac{45045}{720720}
Ko te maha noa iti rawa atu o 360360 me 16 ko 720720. Me tahuri \frac{1051613}{360360} me \frac{1}{16} ki te hautau me te tautūnga 720720.
\frac{2103226+45045}{720720}
Tā te mea he rite te tauraro o \frac{2103226}{720720} me \frac{45045}{720720}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2148271}{720720}
Tāpirihia te 2103226 ki te 45045, ka 2148271.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}