Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0.5x+y=9,1.6x+0.2y=13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.5x+y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.5x=-y+9
Me tango y mai i ngā taha e rua o te whārite.
x=2\left(-y+9\right)
Me whakarea ngā taha e rua ki te 2.
x=-2y+18
Whakareatia 2 ki te -y+9.
1.6\left(-2y+18\right)+0.2y=13
Whakakapia te -2y+18 mō te x ki tērā atu whārite, 1.6x+0.2y=13.
-3.2y+28.8+0.2y=13
Whakareatia 1.6 ki te -2y+18.
-3y+28.8=13
Tāpiri -\frac{16y}{5} ki te \frac{y}{5}.
-3y=-15.8
Me tango 28.8 mai i ngā taha e rua o te whārite.
y=\frac{79}{15}
Whakawehea ngā taha e rua ki te -3.
x=-2\times \frac{79}{15}+18
Whakaurua te \frac{79}{15} mō y ki x=-2y+18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{158}{15}+18
Whakareatia -2 ki te \frac{79}{15}.
x=\frac{112}{15}
Tāpiri 18 ki te -\frac{158}{15}.
x=\frac{112}{15},y=\frac{79}{15}
Kua oti te pūnaha te whakatau.
0.5x+y=9,1.6x+0.2y=13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.5&1\\1.6&0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.5&1\\1.6&0.2\end{matrix}\right))\left(\begin{matrix}0.5&1\\1.6&0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&1\\1.6&0.2\end{matrix}\right))\left(\begin{matrix}9\\13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.5&1\\1.6&0.2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&1\\1.6&0.2\end{matrix}\right))\left(\begin{matrix}9\\13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.5&1\\1.6&0.2\end{matrix}\right))\left(\begin{matrix}9\\13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.2}{0.5\times 0.2-1.6}&-\frac{1}{0.5\times 0.2-1.6}\\-\frac{1.6}{0.5\times 0.2-1.6}&\frac{0.5}{0.5\times 0.2-1.6}\end{matrix}\right)\left(\begin{matrix}9\\13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{15}&\frac{2}{3}\\\frac{16}{15}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}9\\13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{15}\times 9+\frac{2}{3}\times 13\\\frac{16}{15}\times 9-\frac{1}{3}\times 13\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{112}{15}\\\frac{79}{15}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{112}{15},y=\frac{79}{15}
Tangohia ngā huānga poukapa x me y.
0.5x+y=9,1.6x+0.2y=13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
1.6\times 0.5x+1.6y=1.6\times 9,0.5\times 1.6x+0.5\times 0.2y=0.5\times 13
Kia ōrite ai a \frac{x}{2} me \frac{8x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1.6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.5.
0.8x+1.6y=14.4,0.8x+0.1y=6.5
Whakarūnātia.
0.8x-0.8x+1.6y-0.1y=14.4-6.5
Me tango 0.8x+0.1y=6.5 mai i 0.8x+1.6y=14.4 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
1.6y-0.1y=14.4-6.5
Tāpiri \frac{4x}{5} ki te -\frac{4x}{5}. Ka whakakore atu ngā kupu \frac{4x}{5} me -\frac{4x}{5}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
1.5y=14.4-6.5
Tāpiri \frac{8y}{5} ki te -\frac{y}{10}.
1.5y=7.9
Tāpiri 14.4 ki te -6.5 mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=\frac{79}{15}
Whakawehea ngā taha e rua o te whārite ki te 1.5, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
1.6x+0.2\times \frac{79}{15}=13
Whakaurua te \frac{79}{15} mō y ki 1.6x+0.2y=13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
1.6x+\frac{79}{75}=13
Whakareatia 0.2 ki te \frac{79}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
1.6x=\frac{896}{75}
Me tango \frac{79}{75} mai i ngā taha e rua o te whārite.
x=\frac{112}{15}
Whakawehea ngā taha e rua o te whārite ki te 1.6, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{112}{15},y=\frac{79}{15}
Kua oti te pūnaha te whakatau.