Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

0.4x+0.6y=-760,-0.8x-0.3y=800
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.4x+0.6y=-760
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.4x=-0.6y-760
Me tango \frac{3y}{5} mai i ngā taha e rua o te whārite.
x=2.5\left(-0.6y-760\right)
Whakawehea ngā taha e rua o te whārite ki te 0.4, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-1.5y-1900
Whakareatia 2.5 ki te -\frac{3y}{5}-760.
-0.8\left(-1.5y-1900\right)-0.3y=800
Whakakapia te -\frac{3y}{2}-1900 mō te x ki tērā atu whārite, -0.8x-0.3y=800.
1.2y+1520-0.3y=800
Whakareatia -0.8 ki te -\frac{3y}{2}-1900.
0.9y+1520=800
Tāpiri \frac{6y}{5} ki te -\frac{3y}{10}.
0.9y=-720
Me tango 1520 mai i ngā taha e rua o te whārite.
y=-800
Whakawehea ngā taha e rua o te whārite ki te 0.9, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-1.5\left(-800\right)-1900
Whakaurua te -800 mō y ki x=-1.5y-1900. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1200-1900
Whakareatia -1.5 ki te -800.
x=-700
Tāpiri -1900 ki te 1200.
x=-700,y=-800
Kua oti te pūnaha te whakatau.
0.4x+0.6y=-760,-0.8x-0.3y=800
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.4&0.6\\-0.8&-0.3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-760\\800\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.4&0.6\\-0.8&-0.3\end{matrix}\right))\left(\begin{matrix}0.4&0.6\\-0.8&-0.3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.6\\-0.8&-0.3\end{matrix}\right))\left(\begin{matrix}-760\\800\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.4&0.6\\-0.8&-0.3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.6\\-0.8&-0.3\end{matrix}\right))\left(\begin{matrix}-760\\800\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.6\\-0.8&-0.3\end{matrix}\right))\left(\begin{matrix}-760\\800\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.3}{0.4\left(-0.3\right)-0.6\left(-0.8\right)}&-\frac{0.6}{0.4\left(-0.3\right)-0.6\left(-0.8\right)}\\-\frac{-0.8}{0.4\left(-0.3\right)-0.6\left(-0.8\right)}&\frac{0.4}{0.4\left(-0.3\right)-0.6\left(-0.8\right)}\end{matrix}\right)\left(\begin{matrix}-760\\800\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{6}&-\frac{5}{3}\\\frac{20}{9}&\frac{10}{9}\end{matrix}\right)\left(\begin{matrix}-760\\800\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{6}\left(-760\right)-\frac{5}{3}\times 800\\\frac{20}{9}\left(-760\right)+\frac{10}{9}\times 800\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-700\\-800\end{matrix}\right)
Mahia ngā tātaitanga.
x=-700,y=-800
Tangohia ngā huānga poukapa x me y.
0.4x+0.6y=-760,-0.8x-0.3y=800
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-0.8\times 0.4x-0.8\times 0.6y=-0.8\left(-760\right),0.4\left(-0.8\right)x+0.4\left(-0.3\right)y=0.4\times 800
Kia ōrite ai a \frac{2x}{5} me -\frac{4x}{5}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -0.8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.4.
-0.32x-0.48y=608,-0.32x-0.12y=320
Whakarūnātia.
-0.32x+0.32x-0.48y+0.12y=608-320
Me tango -0.32x-0.12y=320 mai i -0.32x-0.48y=608 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-0.48y+0.12y=608-320
Tāpiri -\frac{8x}{25} ki te \frac{8x}{25}. Ka whakakore atu ngā kupu -\frac{8x}{25} me \frac{8x}{25}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-0.36y=608-320
Tāpiri -\frac{12y}{25} ki te \frac{3y}{25}.
-0.36y=288
Tāpiri 608 ki te -320.
y=-800
Whakawehea ngā taha e rua o te whārite ki te -0.36, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-0.8x-0.3\left(-800\right)=800
Whakaurua te -800 mō y ki -0.8x-0.3y=800. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-0.8x+240=800
Whakareatia -0.3 ki te -800.
-0.8x=560
Me tango 240 mai i ngā taha e rua o te whārite.
x=-700
Whakawehea ngā taha e rua o te whārite ki te -0.8, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-700,y=-800
Kua oti te pūnaha te whakatau.