Whakaoti mō x, y
x=-400
y=-1000
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.2x+0.1y=-180,-0.7x-0.2y=480
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.2x+0.1y=-180
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.2x=-0.1y-180
Me tango \frac{y}{10} mai i ngā taha e rua o te whārite.
x=5\left(-0.1y-180\right)
Me whakarea ngā taha e rua ki te 5.
x=-0.5y-900
Whakareatia 5 ki te -\frac{y}{10}-180.
-0.7\left(-0.5y-900\right)-0.2y=480
Whakakapia te -\frac{y}{2}-900 mō te x ki tērā atu whārite, -0.7x-0.2y=480.
0.35y+630-0.2y=480
Whakareatia -0.7 ki te -\frac{y}{2}-900.
0.15y+630=480
Tāpiri \frac{7y}{20} ki te -\frac{y}{5}.
0.15y=-150
Me tango 630 mai i ngā taha e rua o te whārite.
y=-1000
Whakawehea ngā taha e rua o te whārite ki te 0.15, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-0.5\left(-1000\right)-900
Whakaurua te -1000 mō y ki x=-0.5y-900. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=500-900
Whakareatia -0.5 ki te -1000.
x=-400
Tāpiri -900 ki te 500.
x=-400,y=-1000
Kua oti te pūnaha te whakatau.
0.2x+0.1y=-180,-0.7x-0.2y=480
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.2&0.1\\-0.7&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-180\\480\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.2&0.1\\-0.7&-0.2\end{matrix}\right))\left(\begin{matrix}0.2&0.1\\-0.7&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.2&0.1\\-0.7&-0.2\end{matrix}\right))\left(\begin{matrix}-180\\480\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.2&0.1\\-0.7&-0.2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.2&0.1\\-0.7&-0.2\end{matrix}\right))\left(\begin{matrix}-180\\480\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.2&0.1\\-0.7&-0.2\end{matrix}\right))\left(\begin{matrix}-180\\480\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.2}{0.2\left(-0.2\right)-0.1\left(-0.7\right)}&-\frac{0.1}{0.2\left(-0.2\right)-0.1\left(-0.7\right)}\\-\frac{-0.7}{0.2\left(-0.2\right)-0.1\left(-0.7\right)}&\frac{0.2}{0.2\left(-0.2\right)-0.1\left(-0.7\right)}\end{matrix}\right)\left(\begin{matrix}-180\\480\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{3}&-\frac{10}{3}\\\frac{70}{3}&\frac{20}{3}\end{matrix}\right)\left(\begin{matrix}-180\\480\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{3}\left(-180\right)-\frac{10}{3}\times 480\\\frac{70}{3}\left(-180\right)+\frac{20}{3}\times 480\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-400\\-1000\end{matrix}\right)
Mahia ngā tātaitanga.
x=-400,y=-1000
Tangohia ngā huānga poukapa x me y.
0.2x+0.1y=-180,-0.7x-0.2y=480
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-0.7\times 0.2x-0.7\times 0.1y=-0.7\left(-180\right),0.2\left(-0.7\right)x+0.2\left(-0.2\right)y=0.2\times 480
Kia ōrite ai a \frac{x}{5} me -\frac{7x}{10}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -0.7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 0.2.
-0.14x-0.07y=126,-0.14x-0.04y=96
Whakarūnātia.
-0.14x+0.14x-0.07y+0.04y=126-96
Me tango -0.14x-0.04y=96 mai i -0.14x-0.07y=126 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-0.07y+0.04y=126-96
Tāpiri -\frac{7x}{50} ki te \frac{7x}{50}. Ka whakakore atu ngā kupu -\frac{7x}{50} me \frac{7x}{50}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-0.03y=126-96
Tāpiri -\frac{7y}{100} ki te \frac{y}{25}.
-0.03y=30
Tāpiri 126 ki te -96.
y=-1000
Whakawehea ngā taha e rua o te whārite ki te -0.03, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
-0.7x-0.2\left(-1000\right)=480
Whakaurua te -1000 mō y ki -0.7x-0.2y=480. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-0.7x+200=480
Whakareatia -0.2 ki te -1000.
-0.7x=280
Me tango 200 mai i ngā taha e rua o te whārite.
x=-400
Whakawehea ngā taha e rua o te whārite ki te -0.7, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-400,y=-1000
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}