Whakaoti mō x, y
x=100
y=50
Graph
Tohaina
Kua tāruatia ki te papatopenga
0.04x+0.02y=5,0.5\left(x-2\right)-0.4y=29
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.04x+0.02y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.04x=-0.02y+5
Me tango \frac{y}{50} mai i ngā taha e rua o te whārite.
x=25\left(-0.02y+5\right)
Me whakarea ngā taha e rua ki te 25.
x=-0.5y+125
Whakareatia 25 ki te -\frac{y}{50}+5.
0.5\left(-0.5y+125-2\right)-0.4y=29
Whakakapia te -\frac{y}{2}+125 mō te x ki tērā atu whārite, 0.5\left(x-2\right)-0.4y=29.
0.5\left(-0.5y+123\right)-0.4y=29
Tāpiri 125 ki te -2.
-0.25y+61.5-0.4y=29
Whakareatia 0.5 ki te -\frac{y}{2}+123.
-0.65y+61.5=29
Tāpiri -\frac{y}{4} ki te -\frac{2y}{5}.
-0.65y=-32.5
Me tango 61.5 mai i ngā taha e rua o te whārite.
y=50
Whakawehea ngā taha e rua o te whārite ki te -0.65, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-0.5\times 50+125
Whakaurua te 50 mō y ki x=-0.5y+125. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-25+125
Whakareatia -0.5 ki te 50.
x=100
Tāpiri 125 ki te -25.
x=100,y=50
Kua oti te pūnaha te whakatau.
0.04x+0.02y=5,0.5\left(x-2\right)-0.4y=29
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
0.5\left(x-2\right)-0.4y=29
Whakarūnātia te whārite tuarua ki te āhua tānga ngahuru.
0.5x-1-0.4y=29
Whakareatia 0.5 ki te x-2.
0.5x-0.4y=30
Me tāpiri 1 ki ngā taha e rua o te whārite.
\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.04&0.02\\0.5&-0.4\end{matrix}\right))\left(\begin{matrix}5\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.4}{0.04\left(-0.4\right)-0.02\times 0.5}&-\frac{0.02}{0.04\left(-0.4\right)-0.02\times 0.5}\\-\frac{0.5}{0.04\left(-0.4\right)-0.02\times 0.5}&\frac{0.04}{0.04\left(-0.4\right)-0.02\times 0.5}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{13}&\frac{10}{13}\\\frac{250}{13}&-\frac{20}{13}\end{matrix}\right)\left(\begin{matrix}5\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{200}{13}\times 5+\frac{10}{13}\times 30\\\frac{250}{13}\times 5-\frac{20}{13}\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\50\end{matrix}\right)
Mahia ngā tātaitanga.
x=100,y=50
Tangohia ngā huānga poukapa x me y.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}