Tīpoka ki ngā ihirangi matua
Whakaoti mō b, c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{1}{3}-b+c=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-b+c=-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3+3b+c=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3b+c=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-b+c=-\frac{1}{3},3b+c=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-b+c=-\frac{1}{3}
Kōwhiria tētahi o ngā whārite ka whakaotia mō te b mā te wehe i te b i te taha mauī o te tohu ōrite.
-b=-c-\frac{1}{3}
Me tango c mai i ngā taha e rua o te whārite.
b=-\left(-c-\frac{1}{3}\right)
Whakawehea ngā taha e rua ki te -1.
b=c+\frac{1}{3}
Whakareatia -1 ki te -c-\frac{1}{3}.
3\left(c+\frac{1}{3}\right)+c=-3
Whakakapia te c+\frac{1}{3} mō te b ki tērā atu whārite, 3b+c=-3.
3c+1+c=-3
Whakareatia 3 ki te c+\frac{1}{3}.
4c+1=-3
Tāpiri 3c ki te c.
4c=-4
Me tango 1 mai i ngā taha e rua o te whārite.
c=-1
Whakawehea ngā taha e rua ki te 4.
b=-1+\frac{1}{3}
Whakaurua te -1 mō c ki b=c+\frac{1}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=-\frac{2}{3}
Tāpiri \frac{1}{3} ki te -1.
b=-\frac{2}{3},c=-1
Kua oti te pūnaha te whakatau.
\frac{1}{3}-b+c=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-b+c=-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3+3b+c=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3b+c=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-b+c=-\frac{1}{3},3b+c=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&1\\3&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1&1\\3&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&1\\3&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-1-3}&-\frac{1}{-1-3}\\-\frac{3}{-1-3}&-\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-\frac{1}{3}\right)+\frac{1}{4}\left(-3\right)\\\frac{3}{4}\left(-\frac{1}{3}\right)+\frac{1}{4}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
b=-\frac{2}{3},c=-1
Tangohia ngā huānga poukapa b me c.
\frac{1}{3}-b+c=0
Whakaarohia te whārite tuatahi. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-b+c=-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3+3b+c=0
Whakaarohia te whārite tuarua. Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3b+c=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-b+c=-\frac{1}{3},3b+c=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-b-3b+c-c=-\frac{1}{3}+3
Me tango 3b+c=-3 mai i -b+c=-\frac{1}{3} mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-b-3b=-\frac{1}{3}+3
Tāpiri c ki te -c. Ka whakakore atu ngā kupu c me -c, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4b=-\frac{1}{3}+3
Tāpiri -b ki te -3b.
-4b=\frac{8}{3}
Tāpiri -\frac{1}{3} ki te 3.
b=-\frac{2}{3}
Whakawehea ngā taha e rua ki te -4.
3\left(-\frac{2}{3}\right)+c=-3
Whakaurua te -\frac{2}{3} mō b ki 3b+c=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō c hāngai tonu.
-2+c=-3
Whakareatia 3 ki te -\frac{2}{3}.
c=-1
Me tāpiri 2 ki ngā taha e rua o te whārite.
b=-\frac{2}{3},c=-1
Kua oti te pūnaha te whakatau.