Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=\left(x-x_{1}\right)\left(y_{1}+f\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -y_{1} ki te x_{1}+g.
\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g=xy_{1}+xf-x_{1}y_{1}-x_{1}f
Whakamahia te āhuatanga tohatoha hei whakarea te x-x_{1} ki te y_{1}+f.
xy_{1}+xf-x_{1}y_{1}-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
xy_{1}+xf-x_{1}f=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}
Me tāpiri te x_{1}y_{1} ki ngā taha e rua.
xy_{1}+xf=\left(-y_{1}\right)x_{1}+\left(-y_{1}\right)g+x_{1}y_{1}+x_{1}f
Me tāpiri te x_{1}f ki ngā taha e rua.
xy_{1}+xf=-y_{1}g+x_{1}f
Pahekotia te -y_{1}x_{1} me x_{1}y_{1}, ka 0.
\left(y_{1}+f\right)x=-y_{1}g+x_{1}f
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(y_{1}+f\right)x=fx_{1}-gy_{1}
He hanga arowhānui tō te whārite.
\frac{\left(y_{1}+f\right)x}{y_{1}+f}=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Whakawehea ngā taha e rua ki te y_{1}+f.
x=\frac{fx_{1}-gy_{1}}{y_{1}+f}
Mā te whakawehe ki te y_{1}+f ka wetekia te whakareanga ki te y_{1}+f.