Whakaoti mō x, y
x=-1
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x-y=-2,9x-2y=-15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-y=-2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=y-2
Me tāpiri y ki ngā taha e rua o te whārite.
x=-\left(y-2\right)
Whakawehea ngā taha e rua ki te -1.
x=-y+2
Whakareatia -1 ki te y-2.
9\left(-y+2\right)-2y=-15
Whakakapia te -y+2 mō te x ki tērā atu whārite, 9x-2y=-15.
-9y+18-2y=-15
Whakareatia 9 ki te -y+2.
-11y+18=-15
Tāpiri -9y ki te -2y.
-11y=-33
Me tango 18 mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua ki te -11.
x=-3+2
Whakaurua te 3 mō y ki x=-y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1
Tāpiri 2 ki te -3.
x=-1,y=3
Kua oti te pūnaha te whakatau.
-x-y=-2,9x-2y=-15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-1\\9&-2\end{matrix}\right))\left(\begin{matrix}-2\\-15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-\left(-9\right)}&-\frac{-1}{-\left(-2\right)-\left(-9\right)}\\-\frac{9}{-\left(-2\right)-\left(-9\right)}&-\frac{1}{-\left(-2\right)-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}&\frac{1}{11}\\-\frac{9}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}-2\\-15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}\left(-2\right)+\frac{1}{11}\left(-15\right)\\-\frac{9}{11}\left(-2\right)-\frac{1}{11}\left(-15\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=3
Tangohia ngā huānga poukapa x me y.
-x-y=-2,9x-2y=-15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
9\left(-1\right)x+9\left(-1\right)y=9\left(-2\right),-9x-\left(-2y\right)=-\left(-15\right)
Kia ōrite ai a -x me 9x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 9 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-9x-9y=-18,-9x+2y=15
Whakarūnātia.
-9x+9x-9y-2y=-18-15
Me tango -9x+2y=15 mai i -9x-9y=-18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-9y-2y=-18-15
Tāpiri -9x ki te 9x. Ka whakakore atu ngā kupu -9x me 9x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=-18-15
Tāpiri -9y ki te -2y.
-11y=-33
Tāpiri -18 ki te -15.
y=3
Whakawehea ngā taha e rua ki te -11.
9x-2\times 3=-15
Whakaurua te 3 mō y ki 9x-2y=-15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
9x-6=-15
Whakareatia -2 ki te 3.
9x=-9
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 9.
x=-1,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}