Whakaoti mō x, y
x=4
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
-x-6y=-16,5x-y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
-x-6y=-16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
-x=6y-16
Me tāpiri 6y ki ngā taha e rua o te whārite.
x=-\left(6y-16\right)
Whakawehea ngā taha e rua ki te -1.
x=-6y+16
Whakareatia -1 ki te 6y-16.
5\left(-6y+16\right)-y=18
Whakakapia te -6y+16 mō te x ki tērā atu whārite, 5x-y=18.
-30y+80-y=18
Whakareatia 5 ki te -6y+16.
-31y+80=18
Tāpiri -30y ki te -y.
-31y=-62
Me tango 80 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua ki te -31.
x=-6\times 2+16
Whakaurua te 2 mō y ki x=-6y+16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-12+16
Whakareatia -6 ki te 2.
x=4
Tāpiri 16 ki te -12.
x=4,y=2
Kua oti te pūnaha te whakatau.
-x-6y=-16,5x-y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{-6}{-\left(-1\right)-\left(-6\times 5\right)}\\-\frac{5}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}&\frac{6}{31}\\-\frac{5}{31}&-\frac{1}{31}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}\left(-16\right)+\frac{6}{31}\times 18\\-\frac{5}{31}\left(-16\right)-\frac{1}{31}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=2
Tangohia ngā huānga poukapa x me y.
-x-6y=-16,5x-y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\left(-1\right)x+5\left(-6\right)y=5\left(-16\right),-5x-\left(-y\right)=-18
Kia ōrite ai a -x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te -1.
-5x-30y=-80,-5x+y=-18
Whakarūnātia.
-5x+5x-30y-y=-80+18
Me tango -5x+y=-18 mai i -5x-30y=-80 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-30y-y=-80+18
Tāpiri -5x ki te 5x. Ka whakakore atu ngā kupu -5x me 5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-31y=-80+18
Tāpiri -30y ki te -y.
-31y=-62
Tāpiri -80 ki te 18.
y=2
Whakawehea ngā taha e rua ki te -31.
5x-2=18
Whakaurua te 2 mō y ki 5x-y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x=20
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 5.
x=4,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}